【導讀】在工業(yè)、汽車(chē)和可再生能源應用中,基于寬禁帶 (WBG) 技術(shù)的組件,比如 SiC,對提高能效至關(guān)重要。在本文中,安森美 (onsemi) 思考下一代 SiC 器件將如何發(fā)展,從而實(shí)現更高的能效和更小的尺寸,并討論對于轉用 SiC 技術(shù)的公司而言,建立穩健的供應鏈為何至關(guān)重要。
在廣泛的工業(yè)系統(如電動(dòng)汽車(chē)充電基礎設施)和可再生能源系統(如太陽(yáng)能光伏 (PV))應用中,MOSFET 技術(shù)、分立式封裝和功率模塊的進(jìn)步有助于提高能效并降低成本。然而,平衡成本和性能對于設計人員來(lái)說(shuō)是一項持續的挑戰,必須在不增加太陽(yáng)能逆變器的尺寸或散熱成本的情況下,實(shí)現更高的功率。實(shí)現這一平衡非常有必要,因為降低充電成本將是提高電動(dòng)汽車(chē)普及率的關(guān)鍵推動(dòng)因素。
汽車(chē)的能效與車(chē)載電子器件的尺寸、重量和成本息息相關(guān),這些都會(huì )影響車(chē)輛的行駛里程。在電動(dòng)/混動(dòng)汽車(chē)中使用 SiC 取代 IGBT 功率模塊可顯著(zhù)改進(jìn)性能,尤其是在主驅逆變器中,因為這有助于顯著(zhù)提高車(chē)輛的整體能效。輕型乘用車(chē)主要在低負載條件下工作,在低負載下,SiC 的能效優(yōu)勢比 IGBT 更加明顯。車(chē)載充電器 (OBC) 的尺寸和重量也會(huì )影響車(chē)輛行駛里程。因此,OBC 必須設計得盡可能小,而 WBG 器件具有較高的開(kāi)關(guān)頻率,在這方面發(fā)揮著(zhù)至關(guān)重要的作用。
SiC 技術(shù)的優(yōu)勢
為了最大限度減少電源轉換損耗,需要使用具有出色品質(zhì)因數的半導體功率開(kāi)關(guān)。電源應用中使用的硅基半導體器件(IGBT、MOSFET 和二極管)的性能改進(jìn),加上電源轉換拓撲方面的創(chuàng )新,使能效大幅提升。然而,由于硅基半導體器件已接近其理論極限,在新應用中它們正逐漸被 SiC 和氮化鎵 (GaN) 等寬禁帶 (WBG) 半導體取代。
圖 1:多種應用可從 SiC 器件的特性中受益
對更高性能、更大功率密度和更優(yōu)性能的需求不斷挑戰著(zhù) SiC 的極限。得益于寬禁帶特性,SiC 能夠承受比硅更高的電壓(1700V 至 2000V)。同時(shí),SiC 本身還具有更高的電子遷移率和飽和速度。因此,它能夠在明顯更高的頻率和結溫下工作,對電源應用而言非常理想。此外,SiC 器件的開(kāi)關(guān)損耗相對更低,這有助于降低無(wú)源組件的尺寸、重量和成本。
圖 2:SiC 為電源系統帶來(lái)諸多優(yōu)勢
SiC 器件的導通損耗和開(kāi)關(guān)損耗更低,因此降低了對散熱的要求。再加上它能夠在高達 175°C 的結溫 (Tj) 下工作,因而對風(fēng)扇和散熱片等散熱措施的需求減少。系統尺寸、重量和成本也得以減小,并且在空間受限的應用中也能保障更高的可靠性。
需要更高電壓
通過(guò)增加電壓以減少電流,可減少在所需功率下的損耗。因此,在過(guò)去幾年里,來(lái)自 PV 板的直流母線(xiàn)電壓已從 600 V 提高到 1500 V。同樣地,輕型乘用車(chē)中的 400 V 直流母線(xiàn)可提升到 800 V 母線(xiàn)(有時(shí)可提高到 1000 V)。過(guò)去,對于 400 V 母線(xiàn)電壓,所用器件的額定電壓為 750 V?,F在,需要具有更高額定電壓(1200 V 至 1700 V)的器件,以確保這些應用能夠安全、可靠地工作。
SiC 的最新進(jìn)展
為了滿(mǎn)足對具有更高擊穿電壓的器件的需求,安森美開(kāi)發(fā)了 1700V M1 平面 EliteSiC MOSFET 系列產(chǎn)品,針對快速開(kāi)關(guān)應用進(jìn)行了優(yōu)化。NTH4L028N170M1 是該系列首批器件中的一款,其 VDSS 為 1700 V,具有更高的 VGS,為 -15/+25 V,并且其 RDS(ON) 典型值僅 28 m。
這些 1700 V MOSFET 可在高達 175°C 的結溫 (Tj) 下工作,因而能夠與更小的散熱片結合使用,或者有時(shí)甚至不需要使用散熱片。此外,NTH4L028N170M1 的第四個(gè)引腳上有一個(gè)開(kāi)爾文源極連接(TO-247-4L 封裝),用于降低導通功耗和柵極噪聲。這些開(kāi)關(guān)還提供 D2PAK–7L 封裝,具有更低的封裝寄生效應。
圖 3:安森美的新型 1700 V EliteSiC MOSFET
采用 TO-247-3L 和 D2PAK-7L 封裝的 1700 V 1000 mSiC MOSFET 也已投產(chǎn),適用于電動(dòng)汽車(chē)充電和可再生能源應用中的高可靠性輔助電源單元。
安森美開(kāi)發(fā)了 D1 系列 1700 V SiC 肖特基二極管。1700 V 的額定電壓可在 VRRM 和反向重復峰值電壓之間為器件提供更大的電壓裕量。該系列器件具有更低的 VFM(最大正向電壓)和出色的反向漏電流,有助于實(shí)現在高溫高壓下穩定運行的設計。
圖 4:安森美的新型 1700 V 肖特基二極管
NDSH25170A 和 NDSH10170A 器件以 TO-247-2 封裝和裸片兩種形式供貨,還提供 100A 版本(無(wú)封裝)。
供應鏈考量
由于可用組件短缺,一些電子行業(yè)領(lǐng)域的生產(chǎn)已受到影響。因此,在選擇新技術(shù)產(chǎn)品的供應商時(shí),務(wù)必考慮供應商按時(shí)履行訂單的能力。為保障向客戶(hù)的產(chǎn)品供應,安森美最近收購了 GT Advanced Technology (GTAT),以利用 GTAT 在物流方面的專(zhuān)長(cháng)和經(jīng)驗。安森美是目前為數不多具有端到端能力的大型 SiC 供應商,包括晶錠批量生長(cháng)、襯底制備、外延、器件制造、集成模塊和分立式封裝解決方案。為了滿(mǎn)足 SiC 應用的預期增長(cháng)需求,安森美計劃在 2024 年之前將襯底業(yè)務(wù)的產(chǎn)能提高數倍,并擴大公司的器件和模塊產(chǎn)能,在未來(lái)實(shí)現進(jìn)一步擴張。
總結
在不斷發(fā)展的汽車(chē)、可再生能源和工業(yè)應用中,工程師將能夠借助 SiC 器件的特性,解決功率密度和散熱方面的諸多挑戰。憑借 1700V 系列 SiC MOSFET 和二極管,安森美滿(mǎn)足了市場(chǎng)對具有更高擊穿電壓的器件的需求。此外,安森美還為新興的太陽(yáng)能、固態(tài)變壓器和固態(tài)斷路器應用開(kāi)發(fā)了 2000V SiC MOSFET 技術(shù)。
作者:安森美 Ajay Sattu
免責聲明:本文為轉載文章,轉載此文目的在于傳遞更多信息,版權歸原作者所有。本文所用視頻、圖片、文字如涉及作品版權問(wèn)題,請聯(lián)系小編進(jìn)行處理。
推薦閱讀:
IBM陳科典:以行業(yè)和技術(shù)專(zhuān)長(cháng)加速場(chǎng)景落地,助企業(yè)化AI為生產(chǎn)力