【導讀】CoolSiC? MOSFET集高性能、堅固性和易用性于一身。由于開(kāi)關(guān)損耗低,它們的效率很高,因此可以實(shí)現高功率密度。但盡管如此,工程師需要了解器件的靜態(tài)和動(dòng)態(tài)性能以及關(guān)鍵影響參數,以實(shí)現他們的設計目標。在下面的文章中,我們將為您提供更多關(guān)于這方面的見(jiàn)解。
溫度對CoolSiC? MOSFET導通特性的影響
MOSFET靜態(tài)輸出特性的關(guān)鍵參數是漏極-源極導通電阻RDS(on)。我們定義了CoolSiC? MOSFET不同溫度下的輸出特性曲線(xiàn),如圖1左側所述。閾值電壓VGS(th)遵循器件的物理原理,隨著(zhù)溫度的升高而下降,如圖1右側所示。
圖1:45mΩ 1200V CoolSiC? MOSFET在室溫和175°C下的輸出特性(左)以及Ron和VGS(th)對溫度的依賴(lài)性(右)
圖1右側可見(jiàn),CoolSiC? MOSFET的導通電阻呈明顯的正溫度系數的,這是低溝道缺陷密度的結果,使得該器件非常適合并聯(lián)使用。這是與DMOS(雙擴散金屬氧化物半導體)元件的另一個(gè)顯著(zhù)區別。DMOS通常顯示出電阻對溫度的依賴(lài)性較弱,因為它們溝道中的缺陷密度高。
DMOS這種電阻對溫度依賴(lài)性弱的特性乍聽(tīng)起來(lái)很有吸引力。然而,隨著(zhù)向更低的導通電阻的發(fā)展,漂移區的正溫度系數將越來(lái)越多地主導總的導通電阻。因此,SiC MOSFET將變得更像硅。即使如此,SiC MOSFET的實(shí)際溫度系數也會(huì )低于相同阻斷電壓下的硅器件。這是由于其絕對摻雜密度較高的結果。此外,由于漂移區對總電阻的貢獻越來(lái)越大,在較高的阻斷電壓下,導通電阻的溫度依賴(lài)性將更加明顯。圖2定性顯示了這種行為。
圖2:MOSFETs的導通電阻的主要行為與溫度的關(guān)系,以及與硅的比較。
同步整流改善體二極管的導通特性
與IGBT(絕緣柵雙極型晶體管)相比,垂直MOSFET(如CoolSiC?器件)通過(guò)體二極管提供反向導通路徑,這實(shí)際上是一個(gè)續流二極管。然而,由于SiC的寬帶隙,該二極管的轉折電壓約為3V,相對較高。這意味著(zhù)連續工作將導致高導通損耗。因此,工程師需要使用同步整流,使二極管只是在一個(gè)很短的死區時(shí)間內工作。在這段時(shí)間之后,通過(guò)像第一象限模式那樣施加一個(gè)正的VGS,溝道再次被打開(kāi)。
這種工作方案在第三象限模式中提供了非常低的導通損耗,因為沒(méi)有轉折電壓,實(shí)現了與第一象限模式中相同的電阻,實(shí)際上,該電阻甚至略低。這是因為JFET(結型場(chǎng)效應晶體管)的影響減少了。圖3顯示了不同柵極電壓下第三象限操作的I-V特性。請注意,由于p-n二極管的結構,也可以實(shí)現一定的脈沖電流處理能力,這可能比正向導通狀態(tài)下,器件所允許的脈沖電流更高。
圖3:45mΩ CoolSiC? MOSFET的體二極管的I-V行為
電容決定了SiC-MOSFET的動(dòng)態(tài)性能
作為一個(gè)單極器件,SiC MOSFET的電容在很大程度上決定了其動(dòng)態(tài)性能。與輸入電容Ciss相比,SiC MOSFET的米勒電容Crss更小。這有利于抑制寄生導通,因此,在半橋電路中運行時(shí),可以避免使用復雜的柵極驅動(dòng)電路。即使使用0V的關(guān)斷電壓,許多CoolSiC? MOSFET可以安全地關(guān)斷。這是因為除了優(yōu)化的電容比例(Crss/Ciss)之外,CoolSiC? MOSFET的閾值電壓也足夠高。圖4中的左圖總結了元件電容與VDS的關(guān)系。
圖4的右邊顯示了4腳TO-247封裝中的單器件半橋的典型開(kāi)關(guān)損耗與漏極電流的關(guān)系。關(guān)斷能量Eoff只略微依賴(lài)負載電流,因為它是由電容主導的。相比之下,開(kāi)通能量Eon隨電流線(xiàn)性增加,并主導著(zhù)總損耗Etot。根據2019年年中的狀況,我們應該強調,CoolSiC? MOSFET在市售的1200V SiC MOSFET中顯示了最低的Eon。Eon和Eoff幾乎與溫度無(wú)關(guān)。需要注意的是,實(shí)際的封裝設計對開(kāi)關(guān)損耗有很大的影響,主要是對導通損耗。開(kāi)爾文引腳(TO247 4pin)在電流方面將功率回路與控制回路分開(kāi),因此有助于防止di/dt對柵極電壓的反饋,從而降低動(dòng)態(tài)損耗。
圖4:45mΩ CoolSiC? MOSFET的典型器件電容與漏極-源極電壓的關(guān)系(左),開(kāi)關(guān)損耗與漏極電流的關(guān)系(右)(在VGS=15/-5V,RG_ext=4.5Ω,VDS=800V,Tvj =175°條件下)
CoolSiC? MOSFET的柵極電荷曲線(xiàn)通常與硅功率器件的典型形狀不同。特別是,如圖5左側所示,沒(méi)有明顯的米勒平臺。在ID=30A、VDS=800V和RG_ext=3.3kΩ、VGS(off)=-5V至VGS(on)=15 V時(shí),總柵極電荷Qtot通常為75nC。
通常情況下,可能需要調整開(kāi)關(guān)速度(dv/dt),以處理振蕩等問(wèn)題。MOSFET的一個(gè)優(yōu)點(diǎn)是可以通過(guò)柵極電阻調整斜率,與合適的驅動(dòng)電路相結合,它甚至能實(shí)現開(kāi)啟和關(guān)閉時(shí)不同的變化率。右邊的圖5顯示了我們的45mΩ 1200V CoolSiC? MOSFET的相應行為。
圖5:45mΩ 1200V CoolSiC? MOSFET的典型柵極電荷曲線(xiàn)(左)和通過(guò)RG,ext控制開(kāi)關(guān)速度的能力(右)。
SiC MOSFET的短路特性
圖6左邊是兩個(gè)45mΩ 1200V CoolSiC? MOSFET的短路波形:一個(gè)是4腳的TO-247封裝,另一個(gè)是3腳TO-247封裝。圖中顯示了兩者在VDS=800V的直流電壓下的情況。器件的短路波形與IGBT有很大的不同。最初,漏極電流迅速增加并達到一個(gè)電流峰值。由于開(kāi)爾文源設計中的反饋回路減少,4腳TO-247封裝的MOSFET的電流上升得更快,在短路事件開(kāi)始時(shí),它也顯示出較少的自熱,峰值電流很高,超過(guò)300A。相反,3腳TO-247封裝的器件顯示出較小的峰值電流。造成這種情況的主要原因是di/dt作用于3腳元件的功率回路中的雜散電感,產(chǎn)生的瞬時(shí)電壓對VGS產(chǎn)生負反饋,從而降低了開(kāi)關(guān)速度。由于開(kāi)爾文連接方案能夠實(shí)現更快的開(kāi)關(guān),消除了這種影響。因此在退飽和效應發(fā)生之前,4引腳器件的電流也可以上升到更高的值。
在峰值電流之后,漏極電流下降到大約150A。這是因為載流子遷移率的降低和自熱導致的溫度上升而產(chǎn)生了更明顯的JFET效應。測試波形干凈穩定,這證明了兩種封裝的TO-247 CoolSiC? MOSFET的典型3μs短路能力。對于功率模塊,根據相關(guān)的目標應用要求,目前的短路能力最高為2μs。我們的CoolSiC? MOSFET是第一個(gè)在數據表中保證短路耐受時(shí)間的器件。
為滿(mǎn)足目標電源應用的要求,CoolSiC? MOSFET技術(shù)在雪崩情況下顯示出高度的魯棒性。圖6右邊描述了一個(gè)1200V元件的典型雪崩行為。(新發(fā)布的650V器件CoolSiC?在數據表中標注了雪崩等級)
圖6:在25°C下,典型的短路是持續時(shí)間的函數(左),以及1200V器件的雪崩行為,在60V下關(guān)閉3.85mH的無(wú)鉗位電感負載(右)。
免責聲明:本文為轉載文章,轉載此文目的在于傳遞更多信息,版權歸原作者所有。本文所用視頻、圖片、文字如涉及作品版權問(wèn)題,請聯(lián)系小編進(jìn)行處理。
推薦閱讀: