【導讀】目前,在實(shí)現“綠色能源”的新技術(shù)革命中,眾多高頻開(kāi)關(guān)電源已經(jīng)開(kāi)始實(shí)現高功率因數校正技術(shù)(特別是在通信電源中),其中采用有源功率因數校正的居多。連續導電模式Boost變換器是電源系統中應用較廣的功率因數校正變換器。
在硬開(kāi)關(guān)連續導電模式Boost變換中,升壓二極管的反向恢復會(huì )引起較大的反向恢復損耗和過(guò)高的di/dt,產(chǎn)生嚴重的電磁干擾。在提高功率因數的同時(shí),提高開(kāi)關(guān)管及半導體管的熱穩定性,降低電磁干擾(EMI)、電壓應力及電流應力尤為重要。
當前眾多軟開(kāi)關(guān)技術(shù)、無(wú)損吸收電路應用到PFC的電路上,確實(shí)達到了很好的效果,但增加的元器件使成本增加了,同時(shí)也降低了電源的可靠性。
本文提到一種新型材料——碳化硅(SiC),用其制作成的肖特基勢壘二極管具有正溫度系數及反向恢復時(shí)間接近零的特點(diǎn),使得PFC上的MOSFET開(kāi)通損耗減少,效率得到進(jìn)一步的提升,可通過(guò)制作一臺500W AC/DC電源以驗證該論點(diǎn)。
1、碳化硅二極管的特點(diǎn)
近年來(lái),碳化硅材料在電子設備技術(shù)的應用方面有了長(cháng)足的發(fā)展,碳化硅材料比通用硅有更突出的優(yōu)點(diǎn)。這主要是因為碳化硅材料比通用的材料有更高的電場(chǎng)擊穿電壓2. 4×106V/cm、更快的電荷移動(dòng)速度、更寬的能帶間隙,材料導熱能力是硅的2~3倍。
這些優(yōu)點(diǎn)使得基于碳化硅制成的肖特基勢壘二極管表現出高的溫度特性(允許最高工作溫度達到300℃,是硅材料的2倍)、高的反向耐壓、低的導通電阻和高的開(kāi)關(guān)頻率。以上特點(diǎn)能使電源系統中的串聯(lián)開(kāi)關(guān)器件體積最小化,開(kāi)關(guān)頻率的提高也使系統的體積進(jìn)一步縮小。
2、 碳化硅二極管穩態(tài)和暫態(tài)特性對PFC的影響
連續模式Boost變換器的基本拓撲結構如圖1所示。它被廣泛應用于功率因數校正電路,電感電流為連續模式。在該電路中,二極管穩態(tài)和暫態(tài)特性對PFC電路影響很大。
圖1 Boost變換器
1)穩態(tài)特性——前向電壓Uf
如圖2(a)所示,硅材料超快恢復二極管(15A/600V)在室溫條件下測試前向電壓降。在2~5A時(shí),正向壓降基本不變,接近飽和,從另一個(gè)側面說(shuō)明硅材料二極管在高溫時(shí)候,正向壓降變小,二極管具有負溫度特性。
如圖2(b)所示,碳化硅肖特基二極管(4A/600V)在室溫條件下測試前向電壓降。在0~4A負載電流變化時(shí),正向壓降基本是線(xiàn)性增加,從另一個(gè)側面說(shuō)明碳化硅肖特基二極管在高溫時(shí)候,正向壓降線(xiàn)性增加,說(shuō)明碳化硅二極管具有正溫度特性。
圖2 負載電流與正向壓降
在大功率PFC電路中,二極管可能需要并聯(lián)使用以擴大容量,器件的電流均勻分配問(wèn)題需要考慮,二極管的前向電壓和導通電阻的特性是關(guān)鍵。碳化硅肖特基二極管所特有的正溫度系數的特性能保證器件并聯(lián)時(shí)的均流要求。
假設由于某些原因,兩個(gè)碳化硅二極管出現電流不均勻的狀態(tài),其中一個(gè)二極管分配的電流較大,則它的導通電阻、正向壓降就相應的增大,阻礙電流的進(jìn)一步增大,從而促進(jìn)電流的再一次分配最后達到電流平衡狀態(tài)。由于硅材料的二極管具有負溫度特性,會(huì )使器件均流的問(wèn)題進(jìn)一步的惡化,不利于工作的穩定性。因此,碳化硅肖特基二極管適用直接器件并聯(lián)。
2)暫態(tài)特性——反向恢復電流
二極管的種類(lèi)很多,但只有肖特基勢壘二極管運載電流的任務(wù)是由多數載流子完成的,沒(méi)有多余的少數載流子復合,恢復時(shí)間非常小,大概在幾十或幾百ps,缺點(diǎn)是其耐壓非常低。其它的硅二極管(如普通二極管、快速二極管、超快恢復二極管)等運載電流的任務(wù)是由少數載流子完成,存在著(zhù)反向恢復時(shí)間的問(wèn)題。所用的兩款超快恢復二極管,其Trr的時(shí)間分別為30ns和13ns,但也不能避免這個(gè)反向電流的問(wèn)題。
碳化硅肖特基二極管由于材料的特性,它同時(shí)具有了兩者的優(yōu)點(diǎn),不但耐壓非常高,而且反向恢復特性和溫度特性都非常好。而硅材料整流管的反向電流及反向恢復時(shí)間會(huì )隨溫度的升高而增大。碳化硅肖特基二極管的反向恢復時(shí)間及反向電流都非常小,并且有非常好的溫度特性,其反向恢復時(shí)間不會(huì )隨著(zhù)溫度升高而變化。
如圖3所示,在室溫25℃時(shí),超快恢復二極管反向恢復時(shí)間是碳化硅肖特基二極管反向時(shí)間的3倍,反向電流是碳化硅肖特基二極管的4倍。在高溫150℃時(shí),超快恢復二極管反向恢復時(shí)間是碳化硅肖特基二極管反向時(shí)間的6倍,反向電流是碳化硅肖特基二極管的12 倍。
圖3 碳化硅二極管與超快恢復二極管反向恢復特性在不同溫度下的比較
一般來(lái)說(shuō),我們都希望在單相PFC電路中的二極管D1的反向恢復時(shí)間越短越好。因反向恢復電流會(huì )給我們帶來(lái)很多問(wèn)題,如二極管反向恢復損耗,及由此引發(fā)的嚴重MOSFET開(kāi)通損耗等。不少軟開(kāi)關(guān)或無(wú)損吸收技術(shù)應用到PFC電路中,如圖4是一個(gè)典型的無(wú)損吸收的應用,目的也是為了克服二極管的反向恢復時(shí)間所帶來(lái)的問(wèn)題。它可實(shí)現主開(kāi)關(guān)管接近零電流開(kāi)通、零電壓關(guān)斷,同時(shí)升壓二極管為零電流關(guān)斷,提高了PFC的效率。但這種電路中,二極管的諧振電壓會(huì )比較高,甚至達到二極管的額定電壓,同時(shí)所用的元器件比較多,增加了成本, 也降低了系統的可靠性。
圖4 PFC無(wú)損吸收電路
為了驗證碳化硅肖特基二極管能給PFC電路帶來(lái)新的改良,我們制作了500W的AC/DC電源,并與超快恢復二極管(DSEP15-06A)做比較。圖4所示電路參數如下:
輸出:535W(53.5V/10A);
輸入:90VAC;
Q1:IRF460A(500V/22A);
D1:650V/4A碳化硅肖特基二極管/DSEP15-06A;
L1:400μH;
C0:440μF/450V;
頻率f:70 kHz。
在室溫25℃,滿(mǎn)載情況下,分別用超快恢復二極管和碳化硅肖特基二極管作為D1進(jìn)行比較。超快恢復二極管在室溫25℃時(shí)的反向恢復特性如圖5所示,前向電流IF為7.5A,反向電流最大為6.5A,反向恢復時(shí)間為40ns,二極管的反向恢復電壓最高達到460V,并且經(jīng)過(guò)5個(gè)震蕩后才穩定。
碳化硅肖特基二極管時(shí)的反向恢復特性如圖6所示,前向電流相同,反向電流最大為0.7A(比超快恢復二極管減少89%),反向恢復時(shí)間在12ns(減少70%),二極管反向恢復電壓為380V (減少18%),而且沒(méi)有了后面的震蕩,關(guān)斷損耗也相應減小。
圖5 超快恢復二極管關(guān)斷電流,電壓波形
圖6 碳化硅二極管關(guān)斷電流,電壓波形
二極管關(guān)斷時(shí)存在反向恢復時(shí)間問(wèn)題,造成的MOSFET在該區間開(kāi)通時(shí)的開(kāi)通電流加大。二極管的反向勢壘電容越大,MOSFET的開(kāi)通峰值電流也越大。
用超快恢復二極管時(shí)MOSFET開(kāi)通電流和電壓波形如圖7(b)所示,MOSFET開(kāi)通電流的峰值高至11.4 A。用碳化硅肖特基二極管時(shí)MOSFET的開(kāi)通的電流、電壓和開(kāi)通損耗波形如圖7(a)所示,MOSFET開(kāi)通電流的峰值只有6.5A。后者的開(kāi)通損耗(面積)比前者開(kāi)通損耗(面積)減少近2/3。
圖7 滿(mǎn)載,MOSFET開(kāi)通波形
通過(guò)上述分析,碳化硅的前向電壓在額定電流值時(shí)是2.00 V,高于超快恢復二極管的前向電壓(1.30 V)。因此,碳化硅的導通損耗是比超快恢復二極管的導通損耗高,但導通損耗在整個(gè)電源損耗中只占小部分,關(guān)鍵還是要減少半導體器件的開(kāi)關(guān)損耗。用碳化硅肖特基二極管導致MOSFET的開(kāi)通損耗減少的效果尤為明顯。
在90V交流輸入測試時(shí),整機效率從85%上升到86%,損耗降低了約6W:220V交流輸入時(shí),整機效率在90%以上。從而散熱片可以適當的減少,頻率可以適當的提高,從而節約成本。
3、總 結
在電源PFC電路中使用碳化硅肖特基二極管有很多好處。首先電源效率得到了顯著(zhù)提高,在其他條件不變時(shí),只需更換二極管就能減小損耗;同時(shí),由于不再需要考慮軟開(kāi)關(guān)或無(wú)損吸收技術(shù),電源的開(kāi)發(fā)周期進(jìn)一步縮短,元件數量減少,電路結構也進(jìn)一步簡(jiǎn)化;更重要的是它減小了對周?chē)娐返碾姶鸥蓴_,提高了電源的可靠性,使產(chǎn)品具有更強的競爭力。
(本文轉載自電力電子技術(shù)與應用微信公眾號)
免責聲明:本文為轉載文章,轉載此文目的在于傳遞更多信息,版權歸原作者所有。本文所用視頻、圖片、文字如涉及作品版權問(wèn)題,請聯(lián)系小編進(jìn)行處理。
推薦閱讀:
工作場(chǎng)所中的協(xié)作:新一代協(xié)作機器人如何改善手動(dòng)工作的性質(zhì)
多功能預驅動(dòng)器,為中高電流驅動(dòng)器提供全方位保護