<s id="eoqoe"><xmp id="eoqoe">
<button id="eoqoe"><strong id="eoqoe"></strong></button>
<s id="eoqoe"><xmp id="eoqoe">
<button id="eoqoe"><strong id="eoqoe"></strong></button>
<wbr id="eoqoe"></wbr>
<wbr id="eoqoe"><strong id="eoqoe"></strong></wbr>
<wbr id="eoqoe"><strong id="eoqoe"></strong></wbr>
<wbr id="eoqoe"><strong id="eoqoe"></strong></wbr>
<wbr id="eoqoe"><label id="eoqoe"></label></wbr>
<button id="eoqoe"></button>
<wbr id="eoqoe"></wbr>
你的位置:首頁(yè) > RF/微波 > 正文

帶有分布式鎖相環(huán)的相控陣的系統級LO相位噪聲模型

發(fā)布時(shí)間:2022-10-08 來(lái)源:Peter Delos,ADI 責任編輯:wenwei

【導讀】對于數字波束成形相控陣,要生成LO,通常會(huì )考慮的實(shí)現方法是向分布于天線(xiàn)陣列中的一系列鎖相環(huán)分配常用基準頻率。對于這些分布式鎖相環(huán),目前文獻中還沒(méi)有充分記錄用于評估組合相位噪聲性能的方法。


在分布式系統中,共同噪聲源是相關(guān)的,而分布式噪聲源如果不相關(guān),在RF信號組合時(shí)就會(huì )降低。對于系統中的大部分組件,這都可以非常直觀(guān)地加以評估。對于鎖相環(huán),環(huán)路中的每個(gè)組件都有與之相關(guān)聯(lián)的噪聲傳遞函數,它們的貢獻是控制環(huán)路以及任何頻率轉換的函數。這會(huì )在嘗試評估組合相位噪聲輸出時(shí)增加復雜性。本文基于已知的鎖相環(huán)建模方法,以及對相關(guān)和不相關(guān)貢獻因素的評估,提出了跟蹤不同頻率偏移下的分布式PLL貢獻的方法。


簡(jiǎn)介


對于任何無(wú)線(xiàn)電系統,都需要為接收器和激勵器精心設計本地振蕩器(LO)生成的實(shí)現方法。隨著(zhù)數字波束成形在相控陣天線(xiàn)系統中不斷普及,需要在大量分布式接收器和激勵器中分配LO信號和基準頻率,這讓設計變得更加復雜。


在系統架構層面需要權衡的因素包括,分配所需的LO頻率或分配較低的頻率基準,以及在靠近使用點(diǎn)的物理位置產(chǎn)生所需的LO。通過(guò)鎖相環(huán)從本地產(chǎn)生LO是一種高度集成的現成選項。下一個(gè)挑戰是評估來(lái)自各種分布式組件以及集中式組件的系統級相位噪聲。


采用分布式鎖相環(huán)的系統如圖1所示。常用基準頻率被分配至多個(gè)鎖相環(huán),各產(chǎn)生一個(gè)輸出頻率。圖1a中的LO輸出被假設為圖1b的混頻器的LO輸入。


1662714029104357.png

圖1. 分布式鎖相環(huán)系統。每個(gè)振蕩器都被鎖相到一個(gè)共同的參考振蕩器上。從1到N的LO信號都應用到相控陣中所示的混頻器的LO端口上。


系統設計人員面臨的一個(gè)挑戰是跟蹤分布式系統的噪聲貢獻、了解相關(guān)和不相關(guān)的噪聲源,并估計整體的系統噪聲。在鎖相環(huán)中,這個(gè)挑戰變得更加嚴峻,因為噪聲傳遞函數都是鎖相環(huán)中的頻率轉換和環(huán)路帶寬設置的函數。


動(dòng)機:組合鎖相環(huán)測量示例


圖2所示為針對組合鎖相環(huán)的測量示例。這些數據是通過(guò)組合來(lái)自多個(gè)ADRV9009收發(fā)器的發(fā)射輸出獲得的。圖中所示為單個(gè)IC、兩個(gè)組合IC和四個(gè)組合IC的情況。對于這個(gè)數據集,在IC組合之后,可以看到明顯的10logN改進(jìn)。為了達到這個(gè)結果,需要采用一個(gè)低噪聲晶體振蕩器參考源。下一節建模的動(dòng)機是推導出一種方法,以計算在具有許多分布式收發(fā)器的大型陣列中,更廣泛地說(shuō)是在具有分布式鎖相環(huán)的任何架構中,這種測量結果會(huì )如何變化。


13.png

圖2. 兩個(gè)組合鎖相環(huán)的相位噪聲測量。


鎖相環(huán)模型


鎖相環(huán)中的噪聲建模已有充分的文檔記錄。1-5圖3所示為輸出相位噪聲圖。在這種類(lèi)型的圖中,設計師可以快速評估環(huán)路中每個(gè)組件的噪聲貢獻,而這些貢獻因素累計起來(lái)即可決定整體的噪聲性能。模型參數設置為代表圖2所示的數據,源振蕩器用于估算將大量IC組合在一起時(shí)的相位噪聲。


14.png

圖3. 典型的鎖相環(huán)相位噪聲分析,顯示所有組件的噪聲貢獻??傇肼暿撬胸暙I因素的總和。


要檢驗分布式鎖相環(huán)的效果,首先要從PLL模型導出參考貢獻和其余PLL組件的貢獻。


將已知的PLL模型擴展為分布式PLL模型


下文將介紹為具有多個(gè)分布式鎖相環(huán)的系統計算組合相位噪聲的過(guò)程。這種方法的前提是能夠將參考振蕩器的噪聲貢獻與VCO和環(huán)路組件的噪聲貢獻分離開(kāi)來(lái)。圖4所示為一個(gè)假設的分布式示例,一個(gè)參考振蕩器對應多個(gè)PLL。這個(gè)計算假設了一個(gè)無(wú)噪聲分布,這不切實(shí)際,但可以用來(lái)說(shuō)明原理。假設分布式PLL的噪聲貢獻是不相關(guān)的,并減少10logN,其中N表示分布式PLL的數量。隨著(zhù)通道增加,噪聲在較大偏移頻率下得到改善,對于大型分布系統,噪聲變得幾乎完全由參考振蕩器主導。


1662713993699153.png

圖4. 開(kāi)始采用分布式鎖相環(huán)相位噪聲建模方法:從鎖相環(huán)模型中提取參考振蕩器和鎖相環(huán)中除參考振蕩器外的所有其他組件的相位噪聲貢獻。作為分布式鎖相環(huán)數量的函數,組合相位噪聲假設參考噪聲是相關(guān)的,而分布在多個(gè)PLL之間的噪聲貢獻是不相關(guān)的。


圖4所示的示例簡(jiǎn)化了對參考振蕩器分布的假設。在真正的系統分析中,系統設計人員還應該考慮參考振蕩器分布中的噪聲貢獻,它們會(huì )降低總體結果。但是,像這樣的簡(jiǎn)化分析是非常有用的,能夠讓人了解架構方面的權衡會(huì )如何影響系統的總體相位噪聲性能。接下來(lái)我們來(lái)看看分布系統中相位噪聲的影響。


參考分布中的相位噪聲說(shuō)明


接下來(lái)將評估兩個(gè)分布選項示例??紤]的第一種情況如圖5所示。在這個(gè)示例中,選擇了一個(gè)常用于快速調諧VCO頻率的寬帶PLL。參考信號的分布是通過(guò)時(shí)鐘PLL IC實(shí)現的,這種IC也常用于簡(jiǎn)化數字數據鏈路(如JESD接口)的時(shí)序限制。左下角顯示了各個(gè)貢獻因素。這些貢獻因素位于器件的頻率,并未調整到輸出頻率。右下角的相位噪聲圖顯示了不同數量的分布式PLL的系統級相位噪聲。


16.png

圖5. 分布中具有PLL IC的分布式寬帶PLL。


該模型的有些特性值得注意。假設采用一個(gè)高性能晶體振蕩器,標稱(chēng)頻率為100 MHz,中央振蕩器的單個(gè)貢獻因素反映在可用的較高端晶體振蕩器上,雖然不一定是較好、較昂貴的可用選擇。雖然中央振蕩器輸出實(shí)際上會(huì )扇出到有限數量的分布式PLL,但這些PLL會(huì )再次按某個(gè)實(shí)際限值扇出并重復,以實(shí)現系統中的完整分布。對于本例中的分布貢獻,假設有16個(gè)分布組件,然后假設它們會(huì )再次扇出。左下角所示的分布電路的單個(gè)貢獻是不含參考振蕩器貢獻的PLL組件的噪聲。本例中的分布假設與源振蕩器同頻率,并根據該函數可用的典型IC來(lái)選擇噪聲貢獻因素。


寬帶PLL假設采用S波段標稱(chēng)頻率,設置采用1 MHz環(huán)路帶寬(盡量與實(shí)際環(huán)路的帶寬一般寬),以進(jìn)行快速調諧。


值得注意的是,選擇這些模型是為了代表可能的實(shí)際情況,且說(shuō)明了陣列中的累積效應。任何詳細的設計或許都能夠改善特定的PLL噪聲曲線(xiàn),這在預料之中,且這種分析方法旨在幫助從工程角度去決定應將設計資源分配在哪些位置以獲得優(yōu)質(zhì)總體效果,而不是為了做出相對于可用組件的確切論斷。


圖5右下角的圖計算了LO分布的總組合相位噪聲。其中應用了各個(gè)貢獻因素的PLL噪聲傳遞函數,它們都被調整至輸出頻率,也包含PLL環(huán)路帶寬的影響。系統數量也包括在內,并且假設它們是不相關(guān)的,因此,這個(gè)貢獻減少了10logN。假設分布數量為16,如前所述,分布貢獻會(huì )減少10log16。在實(shí)踐中,隨著(zhù)分布不斷重復,這種貢獻會(huì )進(jìn)一步減少。但是,額外的噪聲貢獻不那么顯著(zhù)。對于大型陣列中的扇出分布,噪聲將由第一組有源器件主導。在16組扇出的情況下,如果每個(gè)有源器件都是16個(gè)其他有源器件的輸入,那么在所有器件互不相關(guān)的情況下,16個(gè)器件的額外分布層只會(huì )降低~0.25 dB。如果繼續這種分布,總體貢獻將更小。因此,為了簡(jiǎn)化分析,不會(huì )考慮這種影響,且分布的噪聲貢獻通過(guò)計算前16個(gè)并行分布組件得出。


所得的曲線(xiàn)說(shuō)明了幾種效果。與單個(gè)PLL模型相似,近載波噪聲由基準頻率主導,遠載波噪聲由VCO主導,且在將不相關(guān)的VCO組合起來(lái)時(shí),遠載波噪聲得到改善。這一點(diǎn)相當直觀(guān)。不太直觀(guān)的是,模型的值在由分布中的選擇主導的偏移頻率中占較大比重。這一結果導致考慮具有更低噪聲分布和更窄PLL環(huán)路帶寬的第二個(gè)示例。


圖6顯示了一種不同的方法。采用相同的低噪聲晶體振蕩器作為參考。但通過(guò)RF放大器來(lái)分配,而不是通過(guò)PLL重定時(shí)和重新同步。選擇固定頻率的分布式PLL。這會(huì )產(chǎn)生兩種效果:采用單個(gè)頻率且調諧范圍較窄時(shí),VCO本質(zhì)上可以更好,且環(huán)路帶寬可以變得更窄。左下角的圖顯示了各個(gè)貢獻因素。中央振蕩器與前一個(gè)例子相同。請注意分布放大器:考慮低相位噪聲放大器時(shí),它們的性能不是特別高,但比起使用PLL LC(如之前的示例)要好得多。VCO更好、環(huán)路帶寬更窄時(shí),分布式PLL在更高偏移頻率下會(huì )得到改善,但在~1 kHz的中間頻率下時(shí),實(shí)際上要比寬帶PLL示例差。右下角顯示組合結果:參考振蕩器主導低頻,而高于環(huán)路帶寬時(shí),性能會(huì )由分布式PLL主導,且隨著(zhù)分布式PLL的陣列尺寸和數量增加而提高。


17.png

圖6. 分布式窄帶PLL,分布中具備放大器。


圖7顯示這兩個(gè)示例之間的比較。注意~2 kHz到5 kHz偏移頻率范圍內的大范圍差異。


18.png

圖7. 圖5和圖6之間的比較,顯示了基于所選的分布和架構的廣泛系統級性能范圍。


分布式PLL陣列級考慮因素


基于對總體系統相位噪聲性能的加權貢獻的理解,可以得出幾個(gè)與相控陣或多通道RF系統架構相關(guān)的結論。


PLL帶寬


針對相位噪聲優(yōu)化的傳統鎖相環(huán)設計將環(huán)路帶寬設置為偏移頻率,以最小化總體相位噪聲曲線(xiàn)。此時(shí)的頻率一般是參考振蕩器相位噪聲按輸出頻率標準化后與VCO相位噪聲相交的頻率。對于具有多個(gè)鎖相環(huán)的分布式系統,這可能不是最佳環(huán)路帶寬。分布式組件的數量也需要考慮。


要在采用分布式鎖相環(huán)實(shí)現的系統中獲得最佳LO噪聲,需要采用一個(gè)較窄的環(huán)路帶寬來(lái)最小化參考振蕩器的相關(guān)噪聲貢獻。


對于需要快速調優(yōu)PLL的系統,通常會(huì )擴大環(huán)路帶寬來(lái)優(yōu)化速度。遺憾的是,這種優(yōu)化分布式相位噪聲貢獻的思路本身就是背道而馳的??朔@一問(wèn)題的選擇之一是在寬帶環(huán)路之前設置分布式窄帶清理環(huán)路,以降低參考噪聲和分布噪聲相關(guān)位置的偏移頻率。


大型陣列


對于使用數千個(gè)通道的系統,如果分布式組件的貢獻之間保持互不相關(guān),則系統能夠獲得大幅改進(jìn)。主要考慮的問(wèn)題可能?chē)@參考振蕩器的選擇展開(kāi),以及面向分布式接收器和激勵器維持低噪聲分布系統。


直接采樣系統


隨著(zhù)速度和RF輸入帶寬持續提升的GSPS轉換器的不斷普及,直接采樣系統正逐漸在微波頻率實(shí)現。這導致出現一種有趣的取舍現象。數據轉換器只需要一個(gè)時(shí)鐘頻率,RF調諧完全在數字域中完成。通過(guò)限制調諧范圍,可以構建具備相位噪聲性能更高的VCO。這也使得創(chuàng )建數據轉換器時(shí)鐘的PLL的環(huán)路帶寬降低。更低的環(huán)路帶寬會(huì )將參考振蕩器的噪聲傳遞函數降至更低的偏移頻率,從而減少它在系統中的貢獻。這一點(diǎn),再加上改進(jìn)過(guò)的VCO,在某些情況下可能給分布式系統帶來(lái)好處,即使單通道比較結果似乎更青睞替代架構:


組件選項


根據系統架構中所需的選擇,設計人員擁有大量可用的組件選項。2018年度RF、微波和毫米波產(chǎn)品選型指南更新版現已發(fā)布。


近期的集成VCO/PLL選項包括 ADF4371/ADF4372。它們提供的輸出頻率分別高達32 GHz和16 GHz,采用–234 dBc/Hz的先進(jìn)PLL相位噪聲FOM。 ADF5610 提供高達15 GHz的輸出。 ADF5355/ADF5356 的輸出可達13.6 GHz,ADF4356的輸出可達6.8 GHz。


對于單獨的PLL和VCO配置, ADF41513 的工作頻率可達26 GHz,且配有一個(gè)先進(jìn)的鎖相環(huán)相位噪聲FOM,其相位噪聲FOM為-234dBc/Hz。有時(shí),在選擇PLL IC時(shí)要考慮的一個(gè)問(wèn)題是在盡可能高的頻率上操作鑒相器,從倍增20logN到輸出頻率,最小化環(huán)路中的噪聲。 HMC440, HMC4069, HMC698 和 HMC699 采用的PFD的工作頻率高達1.3 GHz。對于VCO,2018年選型指南列出了幾十個(gè)VCO選項,范圍從2 GHz到26 GHz不等。


對于直接采樣選項,ADC和DAC均已發(fā)布。產(chǎn)品支持在L頻段和S頻段直接采樣。ADC具有更高的輸入頻率帶寬,支持C頻段直接采樣。 AD9208 是一個(gè)雙通道3 GSPS ADC,輸入頻率為9 Ghz,支持在上Nyquist區采樣。AD9213是一個(gè)單通道10 GSPS ADC,支持具有較大瞬時(shí)帶寬的接收器。對于DAC, AD917x系列采用雙通道12 GSPS DAC,AD916x系列采用單通道12 GSPS DAC,經(jīng)過(guò)優(yōu)化之后可實(shí)現更低的殘留相位噪聲和更好的SFDR。兩個(gè)系列都支持L頻段和S頻段波形生成。


本節僅提供入門(mén)指南。頻率更高、性能更好的新器件層出不窮。請訪(fǎng)問(wèn)我們的網(wǎng)站 analog.com,或者聯(lián)系本地銷(xiāo)售支持團隊獲得最新的IC信息。


結語(yǔ)


本文介紹了為采用分布式鎖相環(huán)的系統評估相位噪聲的方法。該方法的前提是:每個(gè)組件都可以通過(guò)其各自的噪聲、組件與系統輸出之間的噪聲傳遞函數、使用的數量以及器件之間的任何相關(guān)性來(lái)進(jìn)行跟蹤。所示的示例并不意在對可用的組件或架構功能進(jìn)行論斷。它們旨在說(shuō)明一種方法,以幫助設計人員在數字波束成形相控陣中,對LO中的陣列級相位噪聲貢獻因素以及為分布式波形發(fā)生器和接收器提供服務(wù)的時(shí)鐘分布網(wǎng)絡(luò )進(jìn)行有根據的評估。


參考電路


1 Ulrich Rohde,《微波和無(wú)線(xiàn)頻率合成器:理論與設計》。Wiley,1995年。


2 Floyd Gardner,《鎖相技術(shù)》。第三版,Wiley,2005年。


3 Dean Banerjee,《PLL性能、仿真和設計》,第四版。Dog Ear Publishing,2006年8月。


4 Dan Wolaver,《鎖相環(huán)電路設計》。Prentice Hall,1991年2月。


5 Avi Brillant?!傲私怄i相DRO設計的各方各面?!盡icrowave Journal,2000年9月。


6 Peter Delos. “Phase-Locked Loop Noise Transfer Functions”。High Frequency Electronics,2016年1月。


7 ADS PLL示例?!癙LL相位噪聲”。Keysight技術(shù)。


8 ADIsimPLL。ADI公司


9 Ian Collins. “鎖相環(huán)(PLL)基本原理”?!赌M對話(huà)》,2018年7月。


10 E. Anthony Nelson. “相控陣的噪聲考慮因素”。IEEE,Telesystems會(huì )議,1991年。


11 Heng-Chia Chang. “面向波束控制有源相控陣、帶有獨立振蕩器的耦合鎖相環(huán)分析”。IEEE Transactions on Microwave Theory and Techniques,第52卷,第3期,2004年3月。


12 Thomas H?hne and Ville Ranki. “波束合成過(guò)程中的相位噪聲”。 IEEE Transactions on Wireless Communication ,第9卷,第12期,2010年12月。


13 Antonio Puglielli, Greg LaCaille, Ali Niknejad, Gregory Wright, Borivoje Nikolic, and Elad Alon. “OFDM多用戶(hù)波束合成陣列中的相位噪聲測量與跟蹤”。IEEE ICC,無(wú)線(xiàn)通信研討會(huì ),2016年5月。



免責聲明:本文為轉載文章,轉載此文目的在于傳遞更多信息,版權歸原作者所有。本文所用視頻、圖片、文字如涉及作品版權問(wèn)題,請聯(lián)系小編進(jìn)行處理。


推薦閱讀:


RX24T電機驅動(dòng)配置:3電阻采樣(上)

如何應對不間斷電源(UPS)設計挑戰

Sub-GHz無(wú)線(xiàn)SoC選料,如何選到最適合你的那一顆?

電氣化和智能化,會(huì )給汽車(chē)上的MEMS帶來(lái)什么變化?

有關(guān)eFuse電子保險絲,你應該了解的技術(shù)干貨,都在這里!

特別推薦
技術(shù)文章更多>>
技術(shù)白皮書(shū)下載更多>>
熱門(mén)搜索
?

關(guān)閉

?

關(guān)閉

久久无码人妻精品一区二区三区_精品少妇人妻av无码中文字幕_98精品国产高清在线看入口_92精品国产自产在线观看481页
<s id="eoqoe"><xmp id="eoqoe">
<button id="eoqoe"><strong id="eoqoe"></strong></button>
<s id="eoqoe"><xmp id="eoqoe">
<button id="eoqoe"><strong id="eoqoe"></strong></button>
<wbr id="eoqoe"></wbr>
<wbr id="eoqoe"><strong id="eoqoe"></strong></wbr>
<wbr id="eoqoe"><strong id="eoqoe"></strong></wbr>
<wbr id="eoqoe"><strong id="eoqoe"></strong></wbr>
<wbr id="eoqoe"><label id="eoqoe"></label></wbr>
<button id="eoqoe"></button>
<wbr id="eoqoe"></wbr>