<s id="eoqoe"><xmp id="eoqoe">
<button id="eoqoe"><strong id="eoqoe"></strong></button>
<s id="eoqoe"><xmp id="eoqoe">
<button id="eoqoe"><strong id="eoqoe"></strong></button>
<wbr id="eoqoe"></wbr>
<wbr id="eoqoe"><strong id="eoqoe"></strong></wbr>
<wbr id="eoqoe"><strong id="eoqoe"></strong></wbr>
<wbr id="eoqoe"><strong id="eoqoe"></strong></wbr>
<wbr id="eoqoe"><label id="eoqoe"></label></wbr>
<button id="eoqoe"></button>
<wbr id="eoqoe"></wbr>
你的位置:首頁(yè) > 電源管理 > 正文

氮化鎵GaN驅動(dòng)器的PCB設計策略概要

發(fā)布時(shí)間:2023-03-13 來(lái)源:安森美 責任編輯:wenwei

【導讀】NCP51820 是一款 650 V、高速、半橋驅動(dòng)器,能夠以高達 200 V/ns 的 dV/dt 速率驅動(dòng)氮化鎵(以下簡(jiǎn)稱(chēng)“GaN”) 功率開(kāi)關(guān)。只有合理設計能夠支持這種功率開(kāi)關(guān)轉換的印刷電路板 (PCB) ,才能實(shí)現實(shí)現高電壓、高頻率、快速dV/dt邊沿速率開(kāi)關(guān)的全部性能優(yōu)勢。本文將簡(jiǎn)單介紹NCP51820及利用 NCP51820 設計高性能 GaN 半橋柵極驅動(dòng)電路的 PCB 設計要點(diǎn)。


NCP51820 是一款全功能專(zhuān)用驅動(dòng)器,為充分發(fā)揮高電子遷移率晶體管 (HEMT) GaNFET 的開(kāi)關(guān)性能而設計。與擊穿電壓額定值相似的硅器件相比,制造 GaNFET 所使用的芯片尺寸更小。因此,哪怕與同類(lèi)最佳的硅 MOSFET 相比,GaNFET 的柵極電荷、輸出電容和動(dòng)態(tài)導通電阻也大大降低。此外,GaNFET 沒(méi)有 PN結,因此漏極-源極上沒(méi)有本征寄生體二極管,也就沒(méi)有與第三象限操作相關(guān)的反向恢復電荷。


GaNFET 非常適用于離線(xiàn)半橋功率拓撲、無(wú)橋 PFC 和單端有源箝位拓撲。這些功率級常常采用零電壓開(kāi)關(guān) (ZVS),但也可以在硬開(kāi)關(guān)條件下采用大約 400V 的電壓工作。所有這些改進(jìn)使得 GaNFET 能夠以 MHz 范圍或接近該范圍的頻率開(kāi)關(guān),漏源邊沿速率高達 100V/ns。能否實(shí)現基于 GaN 的功率級的最優(yōu)性能,在很大程度上取決于設計人員對寄生電路元件(如封裝電感、PCB 走線(xiàn)電感、變壓器電容)以及元器件選擇和布局的理解。雖然硅 MOSFET 功率系統中也存在這些寄生元件,但在 GaN 功率解決方案中,當受到其中存在的高 dV/dt 和 di/dt 激勵時(shí),會(huì )有更明顯的響應,因此會(huì )產(chǎn)生問(wèn)題。


NCP51820 的 MLP 無(wú)引線(xiàn)功率封裝(圖 3)以及行業(yè)中的各種無(wú)引線(xiàn) GaNFET 功率封裝(圖 1 和圖 2),體現了為充分降低寄生電感所作的設計努力。同樣,必須特別注意 PCB 設計和元器件布局。為了充分發(fā)揮利用 NCP51820 驅動(dòng)高速半橋功率拓撲中使用的 GaN 功率開(kāi)關(guān)的優(yōu)勢,有一些重要的 PCB 設計因素需要考慮,本白皮書(shū)將重點(diǎn)討論其中的一些重要注意事項。


HEMT GaN 和 NCP51820 封裝說(shuō)明


大多數 GaNFET 封裝包含一個(gè)專(zhuān)用源極開(kāi)爾文返回引腳,如圖 1 中的“SK”所示,其作用只是為了將柵極驅動(dòng)返回電流送回 NCP51820。較高電流的漏源引腳通過(guò)多條焊線(xiàn)焊接到多個(gè)焊盤(pán),不過(guò)為了簡(jiǎn)明起見(jiàn),圖 1 中的簡(jiǎn)化示意圖僅顯示了一條焊線(xiàn)連接。NCP51820 輸出和 GaNFET 柵源開(kāi)爾文引腳之間的接口必須是直接單點(diǎn)連接,該接口特別重要,如含有源極開(kāi)爾文引腳的 GaNFET 部分所述。



但是,并非所有 GaNFET 都包含一個(gè)專(zhuān)用源極開(kāi)爾文返回引腳,例如圖 2 所示的示例。對于不含源極開(kāi)爾文返回引腳的 GaNFET,為 PCB 設計中的柵極驅動(dòng)部分布線(xiàn)時(shí)必須特別注意。對于半橋功率級的開(kāi)關(guān)節點(diǎn)連接,高壓側 GaNFET 的源極直接連接到低壓側 GaNFET 的漏極,構成一個(gè)承載高 di/dt 負載電流的高 dV/dt 節點(diǎn)。不建議直接使用此高壓開(kāi)關(guān)節點(diǎn)的柵極驅動(dòng)返回引腳,如不含源極開(kāi)爾文引腳的 GaNFET 部分所述。


1.png

圖1. 含有源極開(kāi)爾文返回引腳的典型 GaN


2.png

圖2. 不含源極開(kāi)爾文返回引腳的典型 GaN


NCP51820 采用 4x4 mm 無(wú)引線(xiàn)封裝,所有邏輯電平輸入和編程功能都設置在 IC 右側,與策略性設置在 IC 其余三側的電源功能分開(kāi)?;谠O計策略安置引腳,以便必要時(shí)提供高壓隔離。以下 PCB 布局部分說(shuō)明,將充分展現 NCP51820 引腳分配的優(yōu)勢。


3.png

圖3. NCP51820 GaN 驅動(dòng)器引腳分配


PCB 設計策略概要


使用 GaNFET 開(kāi)始 PCB 設計時(shí),最好根據優(yōu)先級考慮整個(gè)布局,如下所列。


1. 必須采用多層PCB設計,并且按照本文所述適當使用接地/返回平面。高頻率、高電壓、高dV/dt和高di/dt都要求采用多層PCB設計方法。為了實(shí)現基于GaN的功率級的全部?jì)?yōu)勢,接地平面必須采取適當的布線(xiàn)或設計,而廉價(jià)的單層PCB設計無(wú)法做到。


2. 開(kāi)始時(shí),首先將對噪聲最敏感的元器件安置在 NCP51820 附近。VDD、VDDH 和 VDDL 旁路電容以及 VBST 電容、電阻和二極管應盡可能靠近各自的引腳。


3. 將 DT 電阻直接放在 DT 和 SGND 引腳之間。


4. HO和LO、拉電流和灌電流柵極驅動(dòng)電阻應盡可能靠近 GaNFET。


5. 將 NCP51820 和關(guān)聯(lián)的元器件移到盡可能靠近 GaNFET 拉電流和灌電流電阻的位置。


6. 如果可能,安置 GaNFET 時(shí)使 HO 和 LO 柵極驅動(dòng)長(cháng)度盡可能匹配。為了避免高電流和高 dV/dt 流經(jīng)過(guò)孔,兩個(gè) GaNFET 最好和 NCP51820 位于 PCB 的同一面。


7. 應將 HO 和 LO 柵極驅動(dòng)視為兩個(gè)獨立的、相互電隔離的柵極驅動(dòng)電路。因此,HO 和 LO 各自都需要專(zhuān)用銅觸點(diǎn) (copper land) 返回平面,這些平面在第 2 層上,位于第 1 層柵極驅動(dòng)布線(xiàn)正下方。


電源環(huán)路、開(kāi)關(guān)節點(diǎn)、柵極驅動(dòng)環(huán)路的正確布線(xiàn)以及使用平面,對于順利完成 GaN PCB 設計至關(guān)重要。這部分內容如有需求,后續可能會(huì )推送新的文章配合插圖對每一項加以說(shuō)明。對于柵極驅動(dòng)器,正確的布線(xiàn)和噪聲隔離將有助于減少額外的寄生環(huán)路電感、噪聲注入、振鈴、柵極振蕩和意外導通。目的是設計一個(gè)精心考慮了適當接地,同時(shí)讓受控電流以最小環(huán)路距離流經(jīng)直接通路連接的高頻電源 PCB。


元器件布局和布線(xiàn)


圖 4 突出顯示了 NCP51820 周?chē)年P(guān)鍵元器件布局以及與 HS 和 LS GaNFET 的接口。


4.png

圖4. NCP51820 元器件布局


含有源極開(kāi)爾文引腳的GaNFET


許多 GaNFET 封裝包括一個(gè)專(zhuān)用源極開(kāi)爾文引腳,用于將柵極驅動(dòng)返回電流與功率開(kāi)關(guān)節點(diǎn)(高壓側)或電源地(低壓側)出現的較高電流和電壓電平隔離。對于具有專(zhuān)用源極開(kāi)爾文引腳的 GaNFET,柵極驅動(dòng)布線(xiàn)相當簡(jiǎn)單。推薦 PCB 布線(xiàn)設計示例如圖 5 所示,可以看到高壓側 GaNFET 柵極驅動(dòng)返回電流與功率開(kāi)關(guān)節點(diǎn)電流有效分隔。


5.png

圖5. 源極開(kāi)爾文 GaNFET 布線(xiàn)


不含源極開(kāi)爾文引腳的GaNFET


有些 GaNFET 封裝不含專(zhuān)用源極開(kāi)爾文引腳,還必須要仔細考慮,將柵極驅動(dòng)返回電流與功率開(kāi)關(guān)節點(diǎn)(高壓側)或電源地(低壓側)出現的較高電流和電壓電平隔離。對于沒(méi)有專(zhuān)用源極開(kāi)爾文引腳的 GaNFET,應從 GaNFET 源極接出一段額外的銅蝕刻線(xiàn),其唯一作用是將柵極驅動(dòng)返回電流送回 NCP51820。盡管不如專(zhuān)用開(kāi)爾文引腳連接那么有效,但這種布線(xiàn)技術(shù)仍然可以在柵極驅動(dòng)電流和功率開(kāi)關(guān)節點(diǎn)之間實(shí)現可接受程度的分離。推薦 PCB 布線(xiàn)設計示例如圖 6 所示,可以看到高壓側 GaNFET 柵極驅動(dòng)返回電流與功率開(kāi)關(guān)節點(diǎn)電流有效分隔。無(wú)論何種類(lèi)型的 GaNFET 封裝,其設計目標都是避免 NCP51820 和支持電路接觸到流過(guò)功率級的潛在破壞性開(kāi)關(guān)電壓和電流。


6.png

圖6. 無(wú)源極開(kāi)爾文引腳的 GaNFET 布線(xiàn)



免責聲明:本文為轉載文章,轉載此文目的在于傳遞更多信息,版權歸原作者所有。本文所用視頻、圖片、文字如涉及作品版權問(wèn)題,請聯(lián)系小編進(jìn)行處理。


推薦閱讀:


P系列定壓電源模塊的EMC性能

貼片壓敏電阻如何保護LED免受ESD的影響?

IO-Link——直至最后一米的連續通信

碳化硅如何革新電氣化趨勢

如何在Python或MATLAB環(huán)境中使用ACE快速評估數據轉換器

特別推薦
技術(shù)文章更多>>
技術(shù)白皮書(shū)下載更多>>
熱門(mén)搜索
?

關(guān)閉

?

關(guān)閉

久久无码人妻精品一区二区三区_精品少妇人妻av无码中文字幕_98精品国产高清在线看入口_92精品国产自产在线观看481页
<s id="eoqoe"><xmp id="eoqoe">
<button id="eoqoe"><strong id="eoqoe"></strong></button>
<s id="eoqoe"><xmp id="eoqoe">
<button id="eoqoe"><strong id="eoqoe"></strong></button>
<wbr id="eoqoe"></wbr>
<wbr id="eoqoe"><strong id="eoqoe"></strong></wbr>
<wbr id="eoqoe"><strong id="eoqoe"></strong></wbr>
<wbr id="eoqoe"><strong id="eoqoe"></strong></wbr>
<wbr id="eoqoe"><label id="eoqoe"></label></wbr>
<button id="eoqoe"></button>
<wbr id="eoqoe"></wbr>