<s id="eoqoe"><xmp id="eoqoe">
<button id="eoqoe"><strong id="eoqoe"></strong></button>
<s id="eoqoe"><xmp id="eoqoe">
<button id="eoqoe"><strong id="eoqoe"></strong></button>
<wbr id="eoqoe"></wbr>
<wbr id="eoqoe"><strong id="eoqoe"></strong></wbr>
<wbr id="eoqoe"><strong id="eoqoe"></strong></wbr>
<wbr id="eoqoe"><strong id="eoqoe"></strong></wbr>
<wbr id="eoqoe"><label id="eoqoe"></label></wbr>
<button id="eoqoe"></button>
<wbr id="eoqoe"></wbr>
你的位置:首頁(yè) > 電源管理 > 正文

SiC MOSFET和Si MOSFET寄生電容在高頻電源中的損耗對比

發(fā)布時(shí)間:2022-12-13 來(lái)源:FUTURE 責任編輯:wenwei

【導讀】富昌電子(Future Electronics)一直致力于以專(zhuān)業(yè)的技術(shù)服務(wù),為客戶(hù)打造個(gè)性化的解決方案,并縮短產(chǎn)品設計周期。在第三代半導體的實(shí)際應用領(lǐng)域,富昌電子結合自身的技術(shù)積累和項目經(jīng)驗,落筆于SiC相關(guān)設計的系列文章。希望以此給到大家一定的設計參考,并期待與您進(jìn)一步的交流。


前兩篇文章我們分別探討了SiC MOSFET的驅動(dòng)電壓,以及SiC器件驅動(dòng)設計中的寄生導通問(wèn)題。本文作為系列文章的第三篇,會(huì )從SiC MOS寄生電容損耗與傳統Si MOS作比較,給出分析和計算過(guò)程,供設計工程師在選擇功率開(kāi)關(guān)器件時(shí)參考!


電力電子行業(yè)功率器件的不斷發(fā)展,第三代半導體(SiC,GaN)代替硅半導體已經(jīng)是大勢所趨。


由于Si MOSFET其輸入阻抗高,隨著(zhù)反向耐壓的提高,通態(tài)電阻也急劇上升,從而限制了在高壓大電流場(chǎng)合的應用。為了進(jìn)一步提高開(kāi)關(guān)電源的效率,迫切需要一種能承受足夠高耐壓和極快開(kāi)關(guān)速度,且具有很低導通電阻和寄生電容的功率半導體器件。


SiC MOSFET有極其低的導通電阻RDS(ON),導致了極其優(yōu)越的正向壓降和導通損耗, 并且具有相當低的柵極電荷和非常低的漏電流,能適合超快的開(kāi)關(guān)速度,更適合高電壓大電流高功率密度的應用環(huán)境。


我們都知道開(kāi)關(guān)電源的頻率越高,每秒開(kāi)關(guān)管改變狀態(tài)的次數就越多,開(kāi)關(guān)損耗和與開(kāi)關(guān)頻率成正比。


富昌電子在長(cháng)期的電源電路研究中發(fā)現:開(kāi)關(guān)電源中所有與開(kāi)關(guān)頻率有關(guān)的損耗,最顯著(zhù)的往往是開(kāi)關(guān)管自身產(chǎn)生的損耗。


本文從MOSFET的寄生電容的角度,結合BOOST PFC電路對Si MOSFET和SiC MOSFET展開(kāi)討論。


對于功率MOSFET寄生電容,在開(kāi)關(guān)轉換的階段,MOSFET柵極表現為一個(gè)簡(jiǎn)單的輸入電容。通過(guò)驅動(dòng)電阻 充電或放電。實(shí)際上,柵極對漏極和原極之間發(fā)生的事情“漠不關(guān)心”。功率MOSFET可等效為下圖:


1668510202538765.png


從驅動(dòng)信號角度去觀(guān)察柵極,有效輸入充電電容Cg是Cgs與Cgd并聯(lián):


2.png


因此,柵極電容充放電循環(huán)的時(shí)間常數為:


3.png


從這個(gè)公式來(lái)看,似乎暗示著(zhù)MOSFET導通和關(guān)斷時(shí)的驅動(dòng)電阻是一樣,實(shí)際上兩者有比較大的差別,那是因為,我們希望導通時(shí)的速率稍慢,而關(guān)斷時(shí)的速率稍快的原因。


MOSFET的寄生電容在交流系統中的表示方法為:有效輸入電容Ciss,輸出電容Coss,反向傳輸電容Crss. 它們都與MOSFET寄生電容有關(guān):


4.png


通常也會(huì )寫(xiě)成:


5.png


為了在同條件下比較Si MOSFET 和 SiC MOSFET的寄生結電容對高頻電源效率的影響。我們用全電壓輸入,輸出500w,工作頻率75kHz的PFC電路來(lái)做比較,選擇onsemi, SI MOSFET FQA6N90C  和 SiC MOSFET NTHL060N090SC1來(lái)完成該對比。


富昌電子在研究過(guò)程中了解到,輸出功率達到500W,Si MOSFET 需要兩個(gè)MOS 并聯(lián)才能滿(mǎn)足設計要求,本文中我們暫且忽略這個(gè)差別,先從單個(gè)的SI MOSFET和SiC MOSFET來(lái)做比較。


靜態(tài)寄生參數對比:

FQA6N90C (SI MOSFET)


6.jpg

7.png


NTHL060N090SC1(SiC MOSFET):


8.jpg

9.png


在實(shí)際MOSFET 工作過(guò)程中的電壓和電流波形如下:


10.png


MOSFET的導通過(guò)程中的驅動(dòng)損耗在 t1+ t2+ t3 +t4時(shí)間內產(chǎn)生,而交叉時(shí)間僅為:t2+ t3,關(guān)斷過(guò)程中的驅動(dòng)損耗在 t6+ t7+ t8 +t9時(shí)間內產(chǎn)生,而交叉時(shí)間僅為:t7+ t8 。


假設MOSFET門(mén)極的驅動(dòng)電阻為10歐姆,關(guān)斷電阻為5歐姆,可得FQA6N90C時(shí)間常數Tg:


11.png


導通過(guò)程T2的周期時(shí)間為:


12.png


導通過(guò)程T3的周期時(shí)間為:


13.png


因此導通過(guò)程中的交叉時(shí)間為:


14.png


導通過(guò)程的交叉損耗為:


15.png


同理關(guān)斷過(guò)程交叉損耗為:


16.png


總的交叉損耗為:


17.png


寄生電容C_ds,因為它不和柵極相連,因此不影響到MOSFET導通過(guò)程中的V-I交叉損耗。但是,該電容在MOSFET關(guān)斷時(shí)充電,在MOSFET導通時(shí)把儲能全部?jì)A瀉到MOSFET中。因此在計算MOSFET的損耗時(shí),該電容不能忽略,特別在離線(xiàn)式的AC-DC的電源中,該寄生電容嚴重影響到電源的效率。在低壓輸入的電源中,該電容對效率的影響表現的不是很明顯。


18.png


可得FQA6N90C寄生電容總損耗為:


19.png


相同的計算過(guò)程可得,NTHL060N090SC1 SIC MOSFET寄生電容總損耗為:


20.png


富昌電子研究結論:在同樣輸入和輸出的電參數,封裝幾乎相同的條件下,比較Si Mosfet和SiC Mosfet寄生電容帶來(lái)的損耗可知,SiC節省了60%的寄生損耗。如果采取兩顆Si MOFET并聯(lián),達到輸出500W PFC的設計目的,Si MOFET寄生電容的損耗是SiC的3.07倍。


總結


本文針對MOS的寄生電容做出了分析,并選用onsemi同等功率的SiC與SiMOST進(jìn)行了設計比較。這部分的損耗,只是電路實(shí)際工作過(guò)程中MOSFET損耗的一部分,MOSFET的損耗分析稍顯復雜, 此處沒(méi)有展開(kāi)探討,富昌電子后續會(huì )連載文章,剖析電路設計中的難點(diǎn)。敬請期待!


來(lái)源:FUTURE



免責聲明:本文為轉載文章,轉載此文目的在于傳遞更多信息,版權歸原作者所有。本文所用視頻、圖片、文字如涉及作品版權問(wèn)題,請聯(lián)系小編進(jìn)行處理。


推薦閱讀:


室內空氣質(zhì)量如何?Sensirion傳感器幫你一探究竟

橋式結構中的柵極-源極間電壓的行為:關(guān)斷時(shí)

鎖相環(huán)技術(shù)解析(下)

PDM信號低通濾波恢復模擬信號

什么是恒流二極管?

特別推薦
技術(shù)文章更多>>
技術(shù)白皮書(shū)下載更多>>
熱門(mén)搜索
?

關(guān)閉

?

關(guān)閉

久久无码人妻精品一区二区三区_精品少妇人妻av无码中文字幕_98精品国产高清在线看入口_92精品国产自产在线观看481页
<s id="eoqoe"><xmp id="eoqoe">
<button id="eoqoe"><strong id="eoqoe"></strong></button>
<s id="eoqoe"><xmp id="eoqoe">
<button id="eoqoe"><strong id="eoqoe"></strong></button>
<wbr id="eoqoe"></wbr>
<wbr id="eoqoe"><strong id="eoqoe"></strong></wbr>
<wbr id="eoqoe"><strong id="eoqoe"></strong></wbr>
<wbr id="eoqoe"><strong id="eoqoe"></strong></wbr>
<wbr id="eoqoe"><label id="eoqoe"></label></wbr>
<button id="eoqoe"></button>
<wbr id="eoqoe"></wbr>