<s id="eoqoe"><xmp id="eoqoe">
<button id="eoqoe"><strong id="eoqoe"></strong></button>
<s id="eoqoe"><xmp id="eoqoe">
<button id="eoqoe"><strong id="eoqoe"></strong></button>
<wbr id="eoqoe"></wbr>
<wbr id="eoqoe"><strong id="eoqoe"></strong></wbr>
<wbr id="eoqoe"><strong id="eoqoe"></strong></wbr>
<wbr id="eoqoe"><strong id="eoqoe"></strong></wbr>
<wbr id="eoqoe"><label id="eoqoe"></label></wbr>
<button id="eoqoe"></button>
<wbr id="eoqoe"></wbr>
你的位置:首頁(yè) > 光電顯示 > 正文

高功率LED的散熱設計與應用趨勢分析

發(fā)布時(shí)間:2011-12-14

中心議題:

  • LED的散熱設計
  • 元件溫度影響LED使用壽命
  • LED元件的結構特性

解決方案:

  • 輔助技術(shù)改善LED的光衰問(wèn)題
  • 改善熱阻強化LED散熱效率
  • 采用高功率LED元件,改善散熱的處理手段
  • 解決LED核心熱源的散熱


LED雖在元件有多項環(huán)保優(yōu)勢,但與一般白熾燈具一樣,燈具本身自己發(fā)光產(chǎn)生的熱,也會(huì )間接影響燈具自身的使用壽命,尤其是LED為點(diǎn)狀發(fā)光光源,其所產(chǎn)生的熱能也集中在極小的區域,若產(chǎn)生的高溫無(wú)法順利排解,那LED的結面溫度將會(huì )因此偏高,進(jìn)而直接影響LED的使用壽命與發(fā)光表現。

LED的光衰問(wèn)題 須透過(guò)輔助技術(shù)改善

LED雖是極具未來(lái)性的光源元件,即便具備壽命長(cháng)優(yōu)點(diǎn),但依舊仍有其壽命限制,尤其是大功率的LED,因為其發(fā)光功率高,所加諸的電力大,工作時(shí)間超長(cháng),甚至還必須放置于戶(hù)外應用,在環(huán)境與元件本身的諸多限制,往往令其使用壽命大幅降低。

過(guò)去在元件的概念都以為,LED至少都有10萬(wàn)小時(shí)壽命,其實(shí)目前的元件在實(shí)地應用時(shí),卻不見(jiàn)得能達到如此高標準的壽命表現,其實(shí)問(wèn)題的核心就在LED的光衰現象,一般而言,如果不考慮線(xiàn)路或是電源電路的故障問(wèn)題,LED元件本身若發(fā)光亮度降低至原有的30%以下,就可以視此LED元件達到不堪用的程度。觀(guān)察LED的光衰現象,可以從多個(gè)層面討論,多數的白光LED是由藍光晶粒LED搭配光學(xué)塑料摻雜黃色螢光粉所呈現,以白光LED為例,其光衰現象就可以從藍光晶粒本身的光衰、與黃色螢光粉本身的光衰兩部分所組成。

在螢光粉的光衰問(wèn)題,其實(shí)對于溫度的影響甚巨,而在晶粒的光衰問(wèn)題,不同顏色的晶粒光衰現象亦有蠻大的差距,其光衰特性的差異視不同廠(chǎng)商、制程與螢光粉配方不同,都會(huì )影響其表現,很難用一致性的討論來(lái)下定論,一般LED元件的光衰表現可透過(guò)LED的廠(chǎng)商的測試數據,檢視其光衰曲線(xiàn)圖大致確認元件特性。

元件溫度將直接影響使用壽命

一般而言,LED的結面溫度與發(fā)光效率是兩組對立的數值,當結面溫度增加,發(fā)光效率也會(huì )持續降低,以實(shí)驗室的數據取一般LED為例作為參考,當結面溫度持續自室溫提升到100度時(shí),發(fā)光效率將持續減低,最高可減少70%左右,如果取白光、藍光、紅光與黃光幾種常見(jiàn)LED光色產(chǎn)品進(jìn)行評估,會(huì )發(fā)現黃光LED受熱造成的光衰現象更為顯著(zhù)。

同時(shí),若將關(guān)注焦點(diǎn)移轉至使用壽命部分進(jìn)行微觀(guān)檢視,在測試數據可以很明顯發(fā)現在70度高溫上下運行時(shí),LED的使用壽命即有75%衰退狀況!同理可證,若要讓LED發(fā)光源能達到最佳化的應用表現,不管是發(fā)光效率的提升、還是使用壽命的延長(cháng),LED「散熱」設計就成為相當重要的關(guān)鍵技術(shù)。

觀(guān)察LED元件的結構特性

想了解LED的散熱問(wèn)題與待克服的技術(shù)瓶頸,就必須先針對LED結構特性進(jìn)行觀(guān)察,了解其運作是如何產(chǎn)生熱源,與在不加諸任何輔助散熱措施下,LED是透過(guò)何種方式處理所產(chǎn)生的熱源。

基本上LED為電流驅動(dòng)元件,發(fā)光的方式是于LED晶粒(Die)以共晶(Eutectic)、覆晶(Flip chip)或打金線(xiàn)的方式,把晶粒放置在基板上,而為了保護共晶、覆晶或打金線(xiàn)的線(xiàn)路與晶粒本身,外表覆上耐高溫的透明材料、或是光學(xué)材料。

從結構上就能發(fā)現,除了LED外覆光學(xué)材料的表面可透過(guò)接觸空氣進(jìn)行熱交換的散熱行為外,LED在發(fā)光過(guò)程所產(chǎn)生的熱,亦可從晶粒上打的金線(xiàn),直接傳導至焊接的主機板散逸熱源,此外,晶粒采共晶或覆晶所放置的System circuit board,透過(guò)表面接觸的熱傳導效果,也可散出絕大部分產(chǎn)生的熱源。

改善熱阻強化LED散熱效率

討論LED散熱效率前需先理解熱阻(thermal resistance)問(wèn)題,熱阻是物體對熱能傳導的阻礙程度,在單位表示上為℃/W,檢言之就是針對一個(gè)物體傳熱功率為1W,而導熱物件兩個(gè)端點(diǎn)的溫度差異,即為該物件的熱阻值,至于檢視LED的熱阻,則是討論在LED開(kāi)啟發(fā)光后,當LED元件內的晶粒熱量傳導趨于穩定時(shí),在芯片的表面以每1W進(jìn)行散逸,在LED的晶粒P/N結點(diǎn)的聯(lián)機或散熱基板間的溫度差異,就成為L(cháng)ED的熱阻。

影響LED元件熱阻的因素很多,例如,LED的晶粒線(xiàn)路連接方式、架構,到光學(xué)覆蓋層的材料特性,都會(huì )影響LED熱阻值,而降低LED也是提升元件壽命的重要手段。此外,象是LED晶粒是采導熱膠或金屬直接相連,都會(huì )影響LED熱阻大小。
[page]
高功率LED元件 改善散熱的處理手段

檢視目前的LED散熱改善手段的處理技術(shù)瓶頸,其實(shí)LED晶粒外部的光學(xué)材料所能改善的熱交換效率有限,這是礙于勿理性的限制,改善幅度相當有限,反而是作為基板的System circuit board和晶粒上為了導通供應驅動(dòng)電力的金線(xiàn),算是可大幅改善LED元件散熱效率的重要關(guān)鍵處,尤其是基礎載板的散熱效能改善,投入的改善措施其效益最為顯著(zhù)、實(shí)際。

而目前也有LED元件廠(chǎng),嘗試從金線(xiàn)下手,將金線(xiàn)距離縮短、線(xiàn)徑增大,藉此提升LED核心晶粒的散熱效能,但LED封裝手法的改善效果有限,在成本與效益上仍未能如透過(guò)基礎載板的散熱改善措施來(lái)得更具效益。

而LED的散熱措施,觀(guān)察LED元件構造會(huì )發(fā)現,散熱的關(guān)鍵會(huì )只剩下LED晶粒與元件本身承載晶粒的載板,與LED元件與安裝于系統主機板上的電路載板兩個(gè)改善手段,基本上承載LED晶粒的載板屬于LED封裝制程中可以介入控制的關(guān)鍵點(diǎn),而LED元件與所安裝的電路板載板散熱關(guān)系,則是一般LED模塊廠(chǎng)所關(guān)注的散熱改善重點(diǎn)。

解決LED核心熱源的散熱處理方式

在LED晶?;宀糠?,主要是將LED晶粒在發(fā)光過(guò)程所產(chǎn)生的核心熱源,快速傳導到外部的重要關(guān)鍵,一般基于散熱考量,在高功率的LED元件方面,多數會(huì )采取散熱效率相對較佳的陶瓷基板為主,目前有薄膜陶瓷基板、低溫共燒多層陶瓷、 厚膜陶瓷基板等基板制法,高功率會(huì )產(chǎn)生高熱的高亮度元件,多數都采行 低溫共燒多層陶瓷或厚膜陶瓷基板,透過(guò)基礎載臺本身的高熱傳導效率,去提升將核心晶粒在發(fā)光歷程所產(chǎn)生的高熱,快速傳導到元件外部。

從此可以理解,陶瓷散熱基板可以說(shuō)是能將LED元件本身的散熱條件,一舉提升的制程材料改善手段,也是目前高功率LED的制作方式,亦有必要針對此進(jìn)行深入說(shuō)明。

LED薄膜陶瓷基板

與低溫共燒多層陶瓷、厚膜陶瓷基板基板技術(shù)不同的是,薄膜陶瓷基板則是采取濺鍍手段或是化學(xué)沈積方式,或佐以黃光微影制程制作,其中,透過(guò)黃光微影會(huì )使線(xiàn)路精密度方面遠遠超越低溫共燒多層陶瓷與厚膜陶瓷基板制作方式,而300度低溫制程可避免陶瓷基板的體積變異問(wèn)題,雖然優(yōu)點(diǎn)較多,其制作成本也相對增加。

LED低溫共燒多層陶瓷

低溫共燒多層陶瓷基板技術(shù)是采取用陶瓷材料,作為基板基礎材料的手段,制作方式是預先將相關(guān)線(xiàn)路透過(guò)網(wǎng)印手法印刷在基板表面,進(jìn)而整合多層陶瓷基板制作,而最后的制程階段則是應用低溫燒結制作而成。

但低溫共燒多層陶瓷基板的制作手段繁復,加上金屬線(xiàn)路部分為采用網(wǎng)印方式處理,在對位誤差和精確度部分仍會(huì )出現可能的技術(shù)限制,而多層陶瓷結構經(jīng)過(guò)燒結制作過(guò)程,也會(huì )遭遇熱脹、冷縮的問(wèn)題,若想在低溫共燒多層陶瓷基板上再應用需針對對位極為精準要求的覆晶制作LED元件產(chǎn)品,其終端產(chǎn)品的良率提升將是一大挑戰。

LED厚膜陶瓷基板

厚膜陶瓷基板同樣也是采取網(wǎng)印方式制作,其工法是預先將材料印制到基板表面,當印刷內容物干燥后,基板再經(jīng)由燒結程序、雷射處理等步驟,完成厚膜陶瓷基板整個(gè)制作流程。

與低溫共燒多層陶瓷一樣,厚膜陶瓷基板一樣會(huì )遭遇到精密度的問(wèn)題,尤其是對位會(huì )有誤差、線(xiàn)路型態(tài)較為粗糙,在產(chǎn)品不斷要求集積化、小型化的趨勢下,厚膜陶瓷基板的制作方式將會(huì )遭遇產(chǎn)品小型化的嚴苛挑戰,同樣在面對共晶、覆晶的制作需求時(shí),厚膜陶瓷基板也會(huì )有對位與精確度的物理限制存在。

但前述也有提到,透過(guò)打金線(xiàn)的方式改善,再搭配特殊陶瓷基板的模式,對于LED元件散熱具有相當大的效益,但金線(xiàn)連結的散熱效能仍相當有限,近來(lái)也有多種解決方案針對此進(jìn)行改善,例如采用具高散熱系數的基板材料,如以碳化硅基板或矽基板取代傳統的氧化鋁材質(zhì),或改用氮化鋁或陽(yáng)極化鋁基板等手段,藉此達到內部高效散熱目的。

高功率LED元件 模塊廠(chǎng)的散熱設計手段

而在系統電路板的部份,多半是模塊廠(chǎng)著(zhù)墨較多的改善角度,早期LED模塊產(chǎn)品大多使用PCB材料作為架構基礎,但實(shí)際上PCB材料的散熱效率有限,近來(lái)針對高效能LED光源模塊多數已逐漸導入具高效導熱的金屬基板材質(zhì)取代PCB,例如鋁基板(MCPCB)或是其它利用金屬材料強化的應用基板,除了系統電路板本身的應用材質(zhì)改變外,為了近一步強化散熱與熱交換效率,于模塊外部也會(huì )采取設置鋁擠型散熱鰭片,或主動(dòng)式散熱風(fēng)扇,透過(guò)強制氣冷的手段強化加速熱散逸的目的。

在LED元件的核心,也有嘗試透過(guò)改善金線(xiàn)的制作邏輯,改用覆晶或共晶的模式將晶粒與外部進(jìn)行連結,取得供應電源的設計方式,而透過(guò)此法所制成的LED元件,內部連接晶粒的導線(xiàn)從點(diǎn)的接觸一舉變成面的連結,熱傳導的基礎條件大幅強化,自然也能加速內部的熱源散逸到元件外部!但共晶或覆晶的制程手段成本較高,對于基板的精密度要求極高,假若基板的平整度不佳,也會(huì )影響后段成品的良率表現,其技術(shù)成熟度仍需要時(shí)間考驗。

要采購薄膜么,點(diǎn)這里了解一下價(jià)格!
特別推薦
技術(shù)文章更多>>
技術(shù)白皮書(shū)下載更多>>
熱門(mén)搜索
?

關(guān)閉

?

關(guān)閉

久久无码人妻精品一区二区三区_精品少妇人妻av无码中文字幕_98精品国产高清在线看入口_92精品国产自产在线观看481页
<s id="eoqoe"><xmp id="eoqoe">
<button id="eoqoe"><strong id="eoqoe"></strong></button>
<s id="eoqoe"><xmp id="eoqoe">
<button id="eoqoe"><strong id="eoqoe"></strong></button>
<wbr id="eoqoe"></wbr>
<wbr id="eoqoe"><strong id="eoqoe"></strong></wbr>
<wbr id="eoqoe"><strong id="eoqoe"></strong></wbr>
<wbr id="eoqoe"><strong id="eoqoe"></strong></wbr>
<wbr id="eoqoe"><label id="eoqoe"></label></wbr>
<button id="eoqoe"></button>
<wbr id="eoqoe"></wbr>