【導讀】在汽車(chē)電源管理系統中做分布式智能設計時(shí),對于智能功率開(kāi)關(guān),確保保護機制是否真正實(shí)現了智能至關(guān)重要,尤其是在涉及多通道驅動(dòng)器的場(chǎng)景中,因為即使是輕微的電流失衡或意外的負載短路都會(huì )影響保護效果。
在汽車(chē)電源管理系統中做分布式智能設計時(shí),對于智能功率開(kāi)關(guān),確保保護機制是否真正實(shí)現了智能至關(guān)重要,尤其是在涉及多通道驅動(dòng)器的場(chǎng)景中,因為即使是輕微的電流失衡或意外的負載短路都會(huì )影響保護效果。
智能驅動(dòng)器在管理和分配汽車(chē)電池包到各種組件(ECU、電機、車(chē)燈、傳感器等)方面發(fā)揮著(zhù)關(guān)鍵作用,這些多通道驅動(dòng)器同時(shí)控制不同的電氣負載,例如,電阻式執行器、電感式執行器和電容式執行器。所有通道的電流都保持均衡對于驅動(dòng)器正常運行并確保車(chē)輛正常且高效地運行至關(guān)重要。在電路布局中,任何造成電流通過(guò)特定金屬路徑集中的輕微電流失衡、負載損壞或失效以及接線(xiàn)不當等意外情況,都可能導致局部電路出現電流聚集效應。電流失衡現象將會(huì )導致芯片過(guò)熱和熱點(diǎn)聚集,最終損壞或燒毀元件。
雖然做了熱模擬實(shí)驗和預防措施,但仍需檢查和驗證智能保護機制的實(shí)現情況,這有助于發(fā)現可能影響干預時(shí)效的潛在問(wèn)題。
智能開(kāi)關(guān)中的熱檢測
高邊開(kāi)關(guān)需要在空間非常小的緊湊封裝內處理大電流,對于能否高效地管理熱量,電流均衡是一個(gè)重要的影響因素。智能功率開(kāi)關(guān)通常安裝在通風(fēng)和散熱不良的封閉區域,這使得熱管理變得更加重要。
因此,保護機制的智能性能取決于嵌入式熱診斷功能,這些基于熱檢測和保護機制的診斷功能用于監測驅動(dòng)器的溫度,并在溫度超過(guò)預設閾值時(shí)執行保護操作。準確度是測溫技術(shù)面臨的一個(gè)難題,因為多通道驅動(dòng)器的電流均衡度對測溫準確度影響很大。
局部電流密度突然變高或短路情況是設計人員非常關(guān)心的一個(gè)問(wèn)題,這兩種現象會(huì )產(chǎn)生分散的熱點(diǎn),導致突發(fā)性的熱聚集效應,使溫度驟然升高。這些情況可能導致過(guò)熱和元器件失效,而且維修成本高昂。
為了防止熱沖擊損壞元器件,保護電路被設計為限制電流并使功率MOSFET保持在安全工作區域(SOA)內,直到觸發(fā)熱關(guān)閉功能,關(guān)閉驅動(dòng)器。然而,這種類(lèi)型的保護可能會(huì )在功率器件表面產(chǎn)生物理應力。為滿(mǎn)足電浪要求和工藝容差,限流值需要設置得較高,但是,當驅動(dòng)短路負載時(shí),較高的限流值會(huì )導致芯片表面的溫度快速上升。溫度驟變會(huì )在芯片表面產(chǎn)生巨大的熱梯度,從而產(chǎn)生熱機械應力,影響器件的可靠性。
VIPower M0-9的解決方案是在高邊驅動(dòng)器低溫區和高溫區分別集成一個(gè)溫度傳感器(如圖1所示)。
圖 1 :具有不同溫度傳感器的智能開(kāi)關(guān)的原理圖
溫度傳感器采用多晶硅二極管制造技術(shù),因為多晶硅二極管的溫度系數在整個(gè)工作溫度范圍內保持很好的線(xiàn)性。低溫傳感器置于驅動(dòng)器內部靠近控制器側的低溫區,而高溫傳感器則位于功率級區域,這是驅動(dòng)器內部溫度最高的區域。
這種雙傳感器技術(shù)可以限制驅動(dòng)器的溫度升幅,因為當溫度達到過(guò)溫閾值,或者兩個(gè)傳感器動(dòng)態(tài)溫度差值達到閾值,熱保護就會(huì )觸發(fā)。一旦過(guò)熱故障消失,當溫度降低到恢復值時(shí),智能開(kāi)關(guān)重新激活。
這個(gè)方法有助于減少開(kāi)關(guān)上的熱機械應力引起的熱疲勞。熱機械應力會(huì )隨著(zhù)時(shí)間的推移而變大,導致開(kāi)關(guān)性能和可靠性降低。
熱測圖
除了熱模擬實(shí)驗和預防方法,紅外(IR)熱成像技術(shù)也是一種獲取驅動(dòng)器熱測圖的有效技術(shù),可以讓設計人員全面了解集成電路內的熱量分布,揭示所有潛在的危險因素。
為了評估智能保護電路在惡劣的車(chē)用環(huán)境中的保護效果,必須在兩種不同的應用場(chǎng)景和惡劣的短路條件下分析驅動(dòng)器內的熱量分布:
· 端子短路(TSC)
· 負載短路(LSC)
端子短路是當元器件或設備的端子之間存在低電阻連接的情況,如圖2所示。
圖2:在 TSC條件下的溫度測量測試電路
另一方面,當負載和電源之間存在感應路徑時(shí),就會(huì )出現負載短路情況,導致電流突然激增(圖3)。
圖3:在 LSC條件下的溫度測量測試電路
測試條件如下:
· Tamb = 25 °C
· Vbat = 14 V
· 當熱成像時(shí),Ton = 1 ms
· 當捕捉熱傳感器和熱點(diǎn)的溫度時(shí),Ton = 300 ms
· TSC條件: RSUPPLY = 10 mΩ, RSHORT = 10 mΩ
· LSC 條件: RSUPPLY = 10 mΩ, LSHORT = 5 μH, RSHORT = 100 mΩ
其中,
Tamb是環(huán)境溫度
Vbat直流電池電壓
Ton是短路時(shí)長(cháng)
RSUPPLY是電池內阻
RSHORT是短路電阻
LSHORT是短路電感
為了生成熱測圖,我們使用了紅外攝像機捕捉每個(gè)位置輻射的紅外線(xiàn),然后將其轉換成溫度值。為了確保特定顏色轉換為正確的溫度值,校準是一個(gè)必不可少的重要過(guò)程。該過(guò)程是比較傳感器拍攝的不同顏色與已知溫度值,分析特定的熱敏參數及其隨溫度升高的趨勢。通過(guò)分析這些參數,校準過(guò)程可以確保熱圖準確地反映被掃描區域的溫度分布。
為了校準紅外攝像傳感器,選用 MOSFET 體漏極二極管的正向電壓 (VF),因為它與溫度呈線(xiàn)性關(guān)系。然而,需要對二極管進(jìn)行預校準才能準確的確定其溫度系數。在 25°C 至 100°C 范圍內改變溫度的同時(shí),測量恒定正向電流 (IF)的電壓VF,即可確定二極管的溫度系數。為防止電流及其相關(guān)功耗引起溫升,IF 取值應在 10mA 至 20mA 范圍內。
用在不同溫度條件下采集的VF值進(jìn)行線(xiàn)性插值和數學(xué)擬合計算,得到二極管的溫度系數,如圖4所示。
圖4 :MOSFET體漏極二極管的預校準
用下列公式計算 (1):
其中:
Dt是溫度變化量;
DVF是正向電壓變化;
K 是二極管的溫度系數。
要創(chuàng )建熱圖,先用紅外成像傳感器以 1ms 的間隔拍攝每個(gè)溫度點(diǎn)。在拍攝完芯片上的所有點(diǎn)位后(大約需要 3000 秒),專(zhuān)用軟件就會(huì )生成熱圖,根據紅外傳感器的最小空間分辨率描繪每個(gè)點(diǎn)位的溫度。把熱圖放到芯片行圖上面,就可以識別工作區域中最熱的熱點(diǎn),當電流流過(guò)器件時(shí),就可以確定這些熱點(diǎn)的坐標。
圖 5 所示是VND9012AJ 雙通道智能開(kāi)關(guān)在 TSC 條件下的熱圖。
圖 5:VND9012AJ 通道在 TSC 條件下的熱圖
熱測圖法是在25°C 到150°C 溫度范圍內利用不同顏色描述驅動(dòng)器各個(gè)通道的溫度分布情況,這是一個(gè)檢測任何過(guò)熱區域、確保驅動(dòng)器在安全溫度內工作的重要方法。通過(guò)提供每個(gè)通道在不同工況下的熱圖,熱圖測試法可以驗證驅動(dòng)器的工作可靠性,而無(wú)需將溫度提高到最大閾值。
為了找到熱點(diǎn)并監測高溫傳感器和低溫傳感器的溫度變化,驗證熱關(guān)斷機制的效果,在實(shí)驗中必須考慮把短路時(shí)長(cháng)延長(cháng)到300ms。
圖 6 所示是在TSC 時(shí)觀(guān)察到的VND9012AJ的溫度變化。
圖 6:兩個(gè)傳感器在 TSC 條件下的溫度變化
上圖表明,高溫傳感器檢測到 VND9012AJ 的兩個(gè)通道中都存在熱點(diǎn),這些熱點(diǎn)的最高溫度在 150 °C 范圍內。
圖 7 所示是VND9012AJ 在 LSC 條件下的熱圖。
圖 7:VND9012AJ 通道在LSC 條件下的熱圖
圖 8所示是在LSC 條件下觀(guān)察到的VND9012AJ的溫度變化。
圖 8:兩個(gè)傳感器在 LSC 條件下的溫度變化
這兩種情況都會(huì )觸發(fā)熱保護機制,把電流限制在安全水平。
結論
實(shí)驗結果讓我們能夠深入洞悉智能開(kāi)關(guān)的設計和開(kāi)關(guān)操作特性,特別是電流分布和熱保護機制,為我們提供寶貴的數據。確保所有通道的電流都保持均衡,對于提高汽車(chē)智能功率驅動(dòng)器的安全性和可靠性至關(guān)重要。紅外熱成像技術(shù)可以精確、全面的分析溫度分布情況,增強智能開(kāi)關(guān)的熱感測和保護系統的性能。在要求苛刻的汽車(chē)環(huán)境中,快速激活這些保護功能對檢測過(guò)熱現象、防止設備或系統損壞至關(guān)重要。
參考文獻
[1] P. Meckler and F. Gerdinand, "High-speed thermography of fast dynamic processes on electronic switching devices", 26th International Conference on Electrical Contacts (ICEC 2012), 2012.
[2] X. Zhou and T. Schoepf, "Detection and formation process of overheated electrical joints due to faulty connections", 26th International Conference on Electrical Contacts (ICEC 2012), 2012.
[3] T. Israel, M. Gatzsche, S. Schlegel, S. Gro?mann, T. Kufner, G. Freudiger, "The impact of short circuits on contact elements in high power applications", IEEE Holm Conference on Electrical Contacts, 2017.
[4] Y. Lozanov, "Assessment of the technical condition of electric contact joints using thermography", 17th Conference on Electrical Machines, Drives and Power Systems (ELMA), 2021.
[5] M. Bonarrigo, G. Gambino, F. Scrimizzi, "Intelligent power switches augment vehicle performance and comfort", Power Electronics News, Oct. 10, 2023.
(來(lái)源:意法半導體, 卡塔尼亞, 意大利,作者:by Giusy Gambino, Marcello Vecchio, Filippo Scrimizzi)
免責聲明:本文為轉載文章,轉載此文目的在于傳遞更多信息,版權歸原作者所有。本文所用視頻、圖片、文字如涉及作品版權問(wèn)題,請聯(lián)系小編進(jìn)行處理。
推薦閱讀:
探索面向Wi-Fi 6GHz領(lǐng)域的自動(dòng)頻率協(xié)調(AFC)技術(shù)
連載一:車(chē)載以太網(wǎng)時(shí)間敏感性網(wǎng)絡(luò )應用場(chǎng)景和實(shí)現難點(diǎn)