<s id="eoqoe"><xmp id="eoqoe">
<button id="eoqoe"><strong id="eoqoe"></strong></button>
<s id="eoqoe"><xmp id="eoqoe">
<button id="eoqoe"><strong id="eoqoe"></strong></button>
<wbr id="eoqoe"></wbr>
<wbr id="eoqoe"><strong id="eoqoe"></strong></wbr>
<wbr id="eoqoe"><strong id="eoqoe"></strong></wbr>
<wbr id="eoqoe"><strong id="eoqoe"></strong></wbr>
<wbr id="eoqoe"><label id="eoqoe"></label></wbr>
<button id="eoqoe"></button>
<wbr id="eoqoe"></wbr>
你的位置:首頁(yè) > 電路保護 > 正文

在低側電流檢測中使用單端放大器:誤差源和布局技巧

發(fā)布時(shí)間:2023-05-08 責任編輯:lina

【導讀】低側檢測的主要優(yōu)點(diǎn)是可以使用相對簡(jiǎn)單的配置來(lái)放大分流電阻器兩端的電壓。例如,通用運算放大器的非反相配置可以成為需要能夠在消費市場(chǎng)空間競爭的成本敏感型電機控制應用的有效選擇。


在低側電流檢測中使用單端放大器

低側檢測的主要優(yōu)點(diǎn)是可以使用相對簡(jiǎn)單的配置來(lái)放大分流電阻器兩端的電壓。例如,通用運算放大器的非反相配置可以成為需要能夠在消費市場(chǎng)空間競爭的成本敏感型電機控制應用的有效選擇。

基于同相配置的電路圖如圖1所示。


在低側電流檢測中使用單端放大器:誤差源和布局技巧
圖1。


然而,這種低成本解決方案可能會(huì )受到多種不同錯誤的影響。為了準確測量電流,我們需要考慮任何可能影響電路易受影響節點(diǎn)(例如放大器輸入)的非理想效應。我們將在下面更詳細地討論這個(gè)問(wèn)題。

微量電阻

一個(gè)重要的錯誤是與 R shunt串聯(lián)的 PCB 跡線(xiàn)的寄生電阻。由于 R shunt在毫歐范圍內具有很小的值,因此與 R shunt串聯(lián)的任何寄生電阻都可能導致顯著(zhù)誤差。通過(guò) R雜散對該寄生電阻建模,我們得到圖 2中的原理圖。


在低側電流檢測中使用單端放大器:誤差源和布局技巧
圖 2。


根據應用,I負載可高達數百安培。因此,即使是較小的 R stray值也會(huì )產(chǎn)生相當大的誤差電壓 V error。該誤差電壓將被放大器的增益放大并出現在輸出端。

由于銅電阻的溫度系數相當高(約 0.4%/°C),R 的值會(huì )發(fā)生雜散,因此誤差電壓會(huì )隨溫度變化很大。因此,雜散電阻會(huì )在承受較大溫度變化的系統中產(chǎn)生與溫度相關(guān)的誤差。為降低誤差電壓 V error,我們應避免走線(xiàn)過(guò)長(cháng),以限度地減少 R雜散。

值得一提的是,消除 R雜散誤差的更有效解決方案是使用不同的放大器而不是同相配置。從圖 2中可以看出,同相配置具有單端輸入。它檢測節點(diǎn) A 處相對于地的電壓。然而,差分放大器具有差分輸入并感測 R shunt兩端的電壓。這如圖 3所示。


在低側電流檢測中使用單端放大器:誤差源和布局技巧
圖 3。


差分放大器的傳遞函數由下式給出:

[v_{out}=frac{R_{2}}{R_{1}}left(v_{A}-v_{B} ight)=frac{R_{2}}{R_{1} }V_{分流器}]

由于放大器的差分輸入檢測分流電阻兩端的電壓,PCB 走線(xiàn)的電阻不會(huì )產(chǎn)生誤差。我們將在以后的文章中更詳細地研究差分放大器配置。

阻焊性

另一個(gè)誤差源是與檢測電阻串聯(lián)的焊錫電阻。這在圖 4中進(jìn)行了說(shuō)明。


在低側電流檢測中使用單端放大器:誤差源和布局技巧
圖 4。


在此圖中,負載電流沿紅色箭頭方向從左向右流動(dòng)。垂直跡線(xiàn)將分流電阻器連接到放大器輸入端(In+ 和 In-)。因此,放大器會(huì )感測 A 點(diǎn)和 B 點(diǎn)之間的電壓差。感測電阻器的實(shí)際值為 R shunt +2R solder。焊接電阻可以在幾百微歐姆的范圍內。

誤差變得顯著(zhù),尤其是當使用小分流電阻器時(shí)。例如,對于 0.5 mΩ 的分流電阻器和 I負載= 20 A,焊接電阻的誤差可能高達 22%。為解決這個(gè)問(wèn)題,放大器輸入應直接連接到分流電阻器而不是載流跡線(xiàn)。圖 5顯示了一個(gè)示例布局,可以提供更準確的結果。


在低側電流檢測中使用單端放大器:誤差源和布局技巧
圖 5。


在這種情況下,有兩對 PCB 焊盤(pán):一對用于將 R shunt連接到負載,另一對用于將 R shunt連接到放大器輸入。在大電流應用中,放大器汲取的電流 (I amp ) 遠小于 I load。這就是為什么上述布局可以減少阻焊誤差的原因。

為了更好地理解這項技術(shù),讓我們比較兩種情況下的檢測電壓。使用圖 4所示的布局,檢測到的電壓為:

[v_{A}-v_{B}=left(R_{shunt}+2R_{solder1} ight) imes left(I_{load}+I_{amp} ight)]

由于 I amp比 I load小得多,我們有:

[v_{A}-v_{B}approxleft(R_{shunt}+2R_{solder1} ight) imes I_{load}=R_{shunt}I_{load}+2R_{solder1}I_{加載}]

等式 1。

這給出了 2R solder1 I load的誤差電壓。圖 5中的布局如何?這種布局的電路圖如下所示:


在低側電流檢測中使用單端放大器:誤差源和布局技巧
圖 6。


請注意,電流 I load不經(jīng)過(guò) R solder2返回其源。測得的電壓為:

[v_{C}-v_{D}=R_{shunt} imesleft(I_{load}+I_{amp} ight)+2R_{solder2}I_{amp}approx R_{shunt}I_{ load}+R_{solder2}I_{amp}]

在這種情況下,誤差為 2R solder2 I amp,它遠小于公式 1的誤差,因為 I amp遠小于 I load。這種技術(shù)通常被稱(chēng)為開(kāi)爾文傳感,并在許多應用領(lǐng)域得到使用。它使我們能夠準確測量阻抗。圖 7顯示了一些采用開(kāi)爾文傳感技術(shù)的其他 PCB 布局。


在低側電流檢測中使用單端放大器:誤差源和布局技巧
圖 7.圖片(改編)由TI提供。


您可以在 Analog Devices 的“通過(guò)改進(jìn)低值分流電阻器的焊盤(pán)布局來(lái)優(yōu)化高電流檢測精度”中找到更復雜的開(kāi)爾文連接布局示例。

您可能想知道圖 5 和圖 7中描繪的三種布局中的哪一種可以導致更準確的測量?應該注意的是,很難回答這個(gè)問(wèn)題,因為結果取決于您在設計中使用的電阻器。不同的電阻器制造商在電阻器的標稱(chēng)值時(shí)可能會(huì )使用不同的測量位置。

例如,如果電阻制造商測量了焊盤(pán)內部的電阻,那么圖 7(a)中的布局可以為我們提供更準確的測量結果。

嘈雜的地面

圖 8顯示了另一個(gè)誤差源:噪聲接地。


在低側電流檢測中使用單端放大器:誤差源和布局技巧
圖 8。


我們討論過(guò),由于同相配置具有單端輸入,它測量節點(diǎn) A 相對于地的電壓。假設我們的電路板有一個(gè)專(zhuān)用的地平面。我們可以在非??拷?R分流器的地方放置一個(gè)過(guò)孔,以將 B 點(diǎn)保持在系統接地電位,并限度地減少 PCB 走線(xiàn)電阻的誤差。另一個(gè)敏感節點(diǎn)是節點(diǎn) C。任何耦合到節點(diǎn) C 的信號都會(huì )被放大并出現在輸出端。因此,我們也需要將節點(diǎn) C 保持在地電位。

然而,假設地面有噪聲并且一些電流流過(guò)接地層,如圖8所示。這將導致節點(diǎn) B 和 C 之間存在電位差,而我們理想情況下希望它們具有相同的電位。

假設節點(diǎn) B 保持在地電位,與地電流的電壓差將出現在節點(diǎn) C 并在輸出端引入誤差。為避免此錯誤,建議使用使節點(diǎn) B 和 C 彼此非??拷?PCB 布局。

把它們放在一起

圖 9顯示了一個(gè)考慮了上述注意事項的示例布局。此示例布局基于采用 SOT 23封裝的運算放大器。


在低側電流檢測中使用單端放大器:誤差源和布局技巧
圖 9。


請注意,開(kāi)爾文連接用于檢測分流電阻器兩端的電壓。另請注意,R 1和 R分流器的接地側彼此非??拷?。請記住,開(kāi)爾文連接有幾種不同的焊盤(pán)布局。您可能需要咨詢(xún)電阻器制造商或進(jìn)行一些實(shí)驗以確定適合您設計的布局。


免責聲明:本文為轉載文章,轉載此文目的在于傳遞更多信息,版權歸原作者所有。本文所用視頻、圖片、文字如涉及作品版權問(wèn)題,請聯(lián)系小編進(jìn)行處理。


推薦閱讀:

如何測量開(kāi)關(guān)模式電源 (SMPS) 中的噪聲

久經(jīng)考驗的運算放大器:概述

設計寬帶模擬電壓和電流表

如何設計寬輸入電壓范圍、雙通道USB端口充電器?

使用模擬乘法器的同步解調與基于開(kāi)關(guān)的乘法器


特別推薦
技術(shù)文章更多>>
技術(shù)白皮書(shū)下載更多>>
熱門(mén)搜索
?

關(guān)閉

?

關(guān)閉

久久无码人妻精品一区二区三区_精品少妇人妻av无码中文字幕_98精品国产高清在线看入口_92精品国产自产在线观看481页
<s id="eoqoe"><xmp id="eoqoe">
<button id="eoqoe"><strong id="eoqoe"></strong></button>
<s id="eoqoe"><xmp id="eoqoe">
<button id="eoqoe"><strong id="eoqoe"></strong></button>
<wbr id="eoqoe"></wbr>
<wbr id="eoqoe"><strong id="eoqoe"></strong></wbr>
<wbr id="eoqoe"><strong id="eoqoe"></strong></wbr>
<wbr id="eoqoe"><strong id="eoqoe"></strong></wbr>
<wbr id="eoqoe"><label id="eoqoe"></label></wbr>
<button id="eoqoe"></button>
<wbr id="eoqoe"></wbr>