<s id="eoqoe"><xmp id="eoqoe">
<button id="eoqoe"><strong id="eoqoe"></strong></button>
<s id="eoqoe"><xmp id="eoqoe">
<button id="eoqoe"><strong id="eoqoe"></strong></button>
<wbr id="eoqoe"></wbr>
<wbr id="eoqoe"><strong id="eoqoe"></strong></wbr>
<wbr id="eoqoe"><strong id="eoqoe"></strong></wbr>
<wbr id="eoqoe"><strong id="eoqoe"></strong></wbr>
<wbr id="eoqoe"><label id="eoqoe"></label></wbr>
<button id="eoqoe"></button>
<wbr id="eoqoe"></wbr>
你的位置:首頁(yè) > 互連技術(shù) > 正文

提高RFID系統中耦合器定向性設計

發(fā)布時(shí)間:2011-11-21

中心議題:

  • 耦合器模型的理論分析和仿真
  • 耦合器的改進(jìn)方法及效果

解決方案:

  • 添加高阻抗線(xiàn)法


RFID系統在全球的應用已經(jīng)越來(lái)越廣泛,被譽(yù)為21世紀將會(huì )快速發(fā)展的新型技術(shù)。RFID系統可以應用于多個(gè)頻段,不同頻段有著(zhù)不同的特點(diǎn),UHF頻段的RFID系統讀取速度較快,識別距離較遠,近年來(lái)得到了很快的發(fā)展。本文將重點(diǎn)討論在UHF頻段中,RFID系統中微帶定向耦合器設計的改進(jìn)方案。

在很多RFID系統中,有一些微波多端口器件,放置于reader天線(xiàn)和信號處理模塊中間,用以分離輸出的reader 信號和tag散射的信號,比如環(huán)形器,定向耦合器等等。環(huán)形器體積較大,又需要鐵氧體材料,制作成本較高,而微帶型的定向耦合器通常體積比較小,又很容易加工,因此在這些系統中得到了廣泛的應用。微帶耦合器一般是用一段長(cháng)度為1/4波長(cháng)的微帶耦合線(xiàn)構成,在平行的兩段導帶兩端分別加上兩個(gè)端口,構成定向耦合器的四端口網(wǎng)絡(luò )。

但是,因為微帶線(xiàn)傳輸的模式不是嚴格的TEM波,有少量的縱向場(chǎng)分量,造成了奇偶模式傳輸相速度不平衡,直接導致了微帶耦合器的定向性降低。如公式(1)所示:

在這個(gè)公式中,i=e,o。從上式可以看出,奇偶模相速度是不一樣的,這不但會(huì )影響到微帶耦合器的耦合性能和定向性能,還會(huì )使得頻帶變窄。在這一點(diǎn)上,帶狀線(xiàn)比微帶線(xiàn)要好一些,因為帶狀耦合線(xiàn)周?chē)畛浣橘|(zhì)是均勻的,奇偶模相速度一致,傳輸TEM波,本身就比微帶線(xiàn)要有優(yōu)勢,但加工要麻煩一些,粘合中還會(huì )引入別的誤差。

正因為上述的原因,現在市場(chǎng)上的定向耦合器的隔離度僅僅只有-30dB左右,定向性通常不會(huì )超過(guò)20dB。本文所介紹的一種新型的改進(jìn)方案,即是在耦合端添加高阻抗線(xiàn),使得耦合端不匹配,有一定量的反射。這種反射能量經(jīng)過(guò)微帶線(xiàn)傳輸至隔離端,從而抵消部分隔離端的泄露能量,使得定向性大大提高。在接下來(lái)的實(shí)驗中,可以看到,在指定頻點(diǎn),隔離度可以達到-50dB以下,定向性可以達到-30dB。

1 耦合器模型的理論分析和仿真

微帶定向耦合器在A(yíng)DS中的模型如圖1所示。是一個(gè)四端口器件,中間是一段耦合線(xiàn)。四個(gè)端口分別連接于外部的50Ω端口。從5點(diǎn)到7點(diǎn)是高阻抗線(xiàn),7端點(diǎn)接地,這個(gè)長(cháng)度是一個(gè)變量。連接每個(gè)端口(3端口除外)的微帶線(xiàn)寬度是2.25mm,長(cháng)度是14.4mm,3端口連接的微帶線(xiàn)寬度是1.4mm,長(cháng)度是5mm。耦合線(xiàn)的長(cháng)度是57.7mm,導帶寬度是2.1mm,導帶間距是O.45mm。本文主要討論高阻抗線(xiàn)的作用,所以先將高阻抗線(xiàn)長(cháng)度置于零。PCB板采用PTFE材料,介電常數是2.5,厚度是0.5cm。

首先利用理論分析方法分析該定向耦合器。利用ADS中的line calculation工具,可以得到各個(gè)條線(xiàn)的特性阻抗和電長(cháng)度。連接1,2,4端口的微帶線(xiàn)特性阻抗為36.24Ω,電長(cháng)度為22.6°,連接3端口的微帶線(xiàn)特性阻抗是50Ω,電長(cháng)度為8.2°。耦合線(xiàn)的特性阻抗是37.5Ω,奇模阻抗為33.72Ω,偶模阻抗為41.73Ω,耦合度為 -19.48dB,電長(cháng)度92.4°。理論上說(shuō),如果耦合線(xiàn)的長(cháng)度為90°,耦合的能量最大,耦合端電壓最大,這從公式(2)可以看到。在A(yíng)DS中,對這樣一款定向耦合器的仿真結果如圖2所示。

[page]

式中:C為耦合度;V3為耦合端輸出電壓;V0為耦合器輸入端電壓。顯然,當長(cháng)度為90° 時(shí),tanθ=0,V3=CV0,耦合端信號最大。而該耦合器的長(cháng)度為92.4°,基本上符合耦合器的基本理論,這個(gè)耦合度的數值應該和S31的數值接近。從后面的分析中可以看到,這個(gè)數值和矩量法計算的結果是基本一致的。另一個(gè)重要的參數是S41這個(gè)參數在理想耦合器理論中為0,但實(shí)際中顯然不為0,因為奇偶模的不平衡性,其性能有可能變差,甚至很差。另外用傳輸線(xiàn)等效理論分析辦法,分析輸入S11參數,但這種辦法也只能是粗略的分析,這是由于微帶線(xiàn)傳輸的奇偶模相速度不平衡,奇偶模分量也很難計算。不過(guò)因為耦合度比較低,可以假設1端口到2端口的耦合線(xiàn)為一根獨立的無(wú)耗傳輸線(xiàn)來(lái)計算。1,2端口的阻抗均是50Ω。利用公式(3)可以計算的結果是,Zin1=44.25-j10.24 Ω,Zin2=30.7+j7.71 Ω,Zin3=37.12+j10.65 Ω。這里的1,2,3指的是圖上標的點(diǎn)。用公式(4)可以計算得到Γ=0.13+j0.138,S11=-14.4dB,從這個(gè)數據上看來(lái)阻抗匹配不是很好?,F在的理論分析結果用以和后面的矩量法計算結果進(jìn)行比較。

圖2(a)是S31和S41的圖,在900MHz時(shí)S31為-19.116dB,S41為-25.589dB。圖 2(b)是S11的圖,在800MHz~1GHz之間,S11均在-12dB和-20dB之間。從圖2上可以看出,這個(gè)耦合器的性能并不好。首先是S11 在900MHz時(shí)僅為-15.39dB,定向耦合器是一個(gè)直通的設備,一般來(lái)說(shuō)S11必須要在-30dB以下才合適,否則插入損耗有些過(guò)大,對系統有一些損害。另外定向性過(guò)低,在900MHz時(shí),隔離度為-25.589dB,耦合度為-19.116dB,定向性只有6dB左右,而且在整個(gè)頻段,定向性都不超過(guò)8dB。這個(gè)結果顯然比較符合上文計算的結果,S11=-15.39dB接近上文中的-14.42dB,而S31=-19.116dB和最大耦合功率的理論值-19.48dB也比較接近。

這樣的性能顯然是不滿(mǎn)足要求的。因為tag標簽散射的信號和reader發(fā)射的信號功率差距在40~50 dB以上。而該耦合器的定向性只有8dB,很難分離tag信號和reader信號。這在tag信號輸出端主要表現為,reader信號幅度比tag信號大得太多。尤其在放大器的輸出端,tag疊加在reader的連續波信號上部,很可能在tag信號還沒(méi)有放大到足夠可以檢測時(shí),放大器就已經(jīng)飽和,這樣是很有害的。下面將調整定向耦合器的高阻抗線(xiàn)尺寸,使得耦合器達到比較好的指標。

2 耦合器的改進(jìn)方法及效果

在這一節中,主要講述一種耦合器改進(jìn)方案,即是添加高阻抗線(xiàn)法。如圖1,高阻抗線(xiàn)的終端接地,屬于短路線(xiàn),絕大多數的能量會(huì )反射回來(lái)。在理論上,利用這些反射的能量抵消耦合器在隔離端(port4)的能量以提高其隔離度。4端口泄露的能量除了耦合器本身的隔離度不佳以外,在實(shí)際應用中,還包含有從2端口反射回來(lái)的信號在4端口上的耦合,這個(gè)反射信號主要是天線(xiàn)的失配造成。在這里僅認為2端口是理想的匹配負載。在理想耦合器中,隔離端泄露的信號比耦合端的信號延遲90°,而抵消信號和隔離端信號應該正好相差180°。由于是抵消信號主要由高阻抗線(xiàn)終端反射,因此在圖1中,4 點(diǎn)到7點(diǎn)的電長(cháng)度應該為90°左右。這樣,反射信號傳輸至4點(diǎn)就會(huì )出現反向,然后再傳輸至6點(diǎn),和隔離端的信號也正好是反向的。調節高阻抗線(xiàn)的寬度,可以控制反射信號的功率;調節其長(cháng)度,可以控制反射信號的相位。經(jīng)過(guò)調節,高阻抗線(xiàn)的長(cháng)度為53.7mm,寬度為0.4mm,這個(gè)長(cháng)度加上連接3端口的5mm 短微帶線(xiàn),電長(cháng)度接近90°(91.2°)。仿真的S11,S31和S41結果如圖3所示。

從圖3中明顯可以看出,S11只有很小的變化,這是因為耦合到3,4端口之間耦合線(xiàn)的能量比較小,對輸入反射系數影響比較小,而在改進(jìn)型中,并沒(méi)有改變除了高阻抗線(xiàn)以外的參數。S31和S41均有變化,尤其是s41變化很明顯,從-25dB變到-51dB,而S31也有變化,從-19dB變化到-21dB。S31的變化主要是因為增加了高阻抗線(xiàn),3端口的匹配狀況發(fā)生改變,反射增加了,因此3端口的能量有小幅度下降。 S41下降非常明顯,到了近乎-51dB,致使定向性超過(guò)30dB,這是因為高阻抗線(xiàn)的反射抵消。這個(gè)定向性已經(jīng)非常高,超過(guò)了市場(chǎng)上絕大多數的定向耦合器的指標,這樣的定向耦合器在RFID系統的應用中是很有用的。值得指出的是,雖然應用了這樣高性能的耦合器,reader信號仍然比tag信號要大很多,但系統分辨力是增加了,可以識別更小功率的tag散射信號。如果兩種信號幅度相差不是特別大,可以在放大器不飽和的條件下得到tag散射信號。

但是從圖3中也可以看出耦合器的缺點(diǎn),最明顯的就是高定向性的帶寬非常窄,20dB也只有20MHz左右,這是因為耦合器本身性能比較差。如果是一個(gè)性能本身較好的耦合器,再加上高阻抗線(xiàn)進(jìn)行調節,可以得到一個(gè)比較滿(mǎn)意的頻率特性。而中間最低的903MHz處能顯示出這么高的定向性,顯然是由于在這個(gè)頻率上,隔離端的漏信號剛好和反射抵消信號是反向的。

3 結論

在RFID系統中,耦合器,環(huán)形器等多端口網(wǎng)絡(luò )是非常重要的部件,主要是用于分離reader和tag信號。但是市場(chǎng)上一般的定向耦合器最多只能達到20dB的定向性,這樣的耦合器很有局限性。應用于RFID系統中,分離tag信號的能力比較弱,或者說(shuō),只有在tag信號比較強時(shí)才能從信道中分離出。因此需要對其結構進(jìn)行改進(jìn)。

理論上的定向耦合器在隔離端的信號強度為0,但是在實(shí)際中,由于奇偶模相速度的不平衡,在傳輸的過(guò)程中,奇偶模的分量往往發(fā)生改變,隔離端的信號便不為0,甚至很大。在文中提出的那款模型,隔離端泄露的信號強度就非常大,僅僅比耦合端小6dB左右。為了提高定向性,提出了添加高阻抗線(xiàn)法,這種方法是利用高阻抗線(xiàn)終端的反射信號來(lái)抵消隔離端的泄露信號。

高阻抗線(xiàn)的一個(gè)重要結論是,其終端到耦合端的電長(cháng)度大約為90°。根據微帶耦合器理論,要達到最佳的耦合效果,耦合端和隔離端的長(cháng)度大約為90°,信號相位也相差90°。反射信號要與隔離端信號相差180°,在高阻抗線(xiàn)終端反射回耦合端的信號與耦合端原信號必須反向,這樣才能在傳輸90°以后和隔離端的信號正好反向。另外通過(guò)改變高阻抗線(xiàn)的線(xiàn)寬,可以調節反射信號的強弱。遵循這一原則,通過(guò)對高阻抗線(xiàn)的調節,使得耦合器在 903MHz時(shí),達到-50dB的隔離度,并使定向性達到30dB以上。

要采購定向耦合器么,點(diǎn)這里了解一下價(jià)格!
特別推薦
技術(shù)文章更多>>
技術(shù)白皮書(shū)下載更多>>
熱門(mén)搜索
?

關(guān)閉

?

關(guān)閉

久久无码人妻精品一区二区三区_精品少妇人妻av无码中文字幕_98精品国产高清在线看入口_92精品国产自产在线观看481页
<s id="eoqoe"><xmp id="eoqoe">
<button id="eoqoe"><strong id="eoqoe"></strong></button>
<s id="eoqoe"><xmp id="eoqoe">
<button id="eoqoe"><strong id="eoqoe"></strong></button>
<wbr id="eoqoe"></wbr>
<wbr id="eoqoe"><strong id="eoqoe"></strong></wbr>
<wbr id="eoqoe"><strong id="eoqoe"></strong></wbr>
<wbr id="eoqoe"><strong id="eoqoe"></strong></wbr>
<wbr id="eoqoe"><label id="eoqoe"></label></wbr>
<button id="eoqoe"></button>
<wbr id="eoqoe"></wbr>