【導讀】電力電子集成系統帶來(lái)了許多優(yōu)勢,例如提高效率、增強可靠性以及簡(jiǎn)化設計和組裝。隨著(zhù)各行業(yè)快速電氣化,對集成系統和模塊的需求不斷增加。碳化硅和氮化鎵晶體管(稱(chēng)為寬帶隙 (WBG) 半導體)等先進(jìn)功率半導體器件的出現,進(jìn)一步推動(dòng)了對集成解決方案的需求,以實(shí)現性能和成本效益。
分流電阻的使用
電力電子集成系統帶來(lái)了許多優(yōu)勢,例如提高效率、增強可靠性以及簡(jiǎn)化設計和組裝。隨著(zhù)各行業(yè)快速電氣化,對集成系統和模塊的需求不斷增加。碳化硅和氮化鎵晶體管(稱(chēng)為寬帶隙 (WBG) 半導體)等先進(jìn)功率半導體器件的出現,進(jìn)一步推動(dòng)了對集成解決方案的需求,以實(shí)現性能和成本效益。
與其他測量技術(shù)相比,利用分流技術(shù)的一個(gè)顯著(zhù)優(yōu)勢是其經(jīng)濟性。電流分流器提供了一種經(jīng)濟高效的解決方案,而不影響模型/電路的精度。當與電源模塊集成時(shí),可以實(shí)現更簡(jiǎn)單、更緊湊的傳感結果。在實(shí)際應用中,通常需要額外的電路來(lái)準確讀取和解釋從分流器獲得的信息。這通常涉及實(shí)施放大和調理電路,放大分流器上的小電壓降并將其轉換為可測量的信號。
分流電阻器及其均流功能
實(shí)驗中使用的分流電阻器的電阻值保證公差為 1%。此外,它們相對于 20°C 的溫度系數小于 50ppm/K,因此在 120°C 的溫度下偏差高達 0.5%。在壞的情況下,假設所有并聯(lián)的分流電阻同時(shí)表現出偏差。分流電阻器由連接到銅端子的電阻合金組成。該合金相對于銅的塞貝克系數為 1μV/K??紤]到電阻合金上 20K 的溫差,計算出的預期電壓誤差為 20μV??紤]到標稱(chēng)電流對應于分流器兩端的 128.6mV,該電壓誤差占標稱(chēng)電流的 0.016%。因此,
圖 1:IGBT 直流電勢仿真(1)
仿真結果說(shuō)明了電阻器之間不均勻均流的影響。圖 1 描繪了每個(gè)底部 IGBT 傳導 100A 電流時(shí)的模擬直流電勢分布。仿真顯示 1 號電阻器和 7 號電阻器之間存在壓降差異,這主要是由于 IGBT、分流電阻器和鍵合線(xiàn)的放置導致 DBC 兩端的壓降造成的。
圖 2:傳感端子處各個(gè)電阻器的電壓水平(1)
圖 2 顯示了 1000A 總電流(以 mΩ 為單位)觀(guān)察到的各個(gè)分流器上的模擬電壓。感測端子電壓與 3 號電阻器兩端的電壓緊密匹配,因為 DBC 上的感測導體連接到該電阻器。結果評估表明檢測電壓與理想電壓之間的偏差小于 0.5%。仿真強調了有效分流電阻對模塊內電流路徑的依賴(lài)性,特別是上下開(kāi)關(guān)導通之間的依賴(lài)性??赡艿恼`差緩解方法包括對每個(gè)電流路徑進(jìn)行單獨校準或用每個(gè)分支的固定值校正電阻??刂扑惴梢酝ㄟ^(guò)基于當前占空比的動(dòng)態(tài)加權平均來(lái)解釋不同的電阻值。
直流和脈沖測量結果
通過(guò)向模塊施加直流電流并測量傳感端子上的電壓來(lái)驗證直流電流測量的準確性。
圖 3:測量的分流電阻(1)
圖 3 顯示了三個(gè)傳導路徑(底部二極管、底部 IGBT 和頂部 IGBT)的有效分流電阻 R Sense與負載電流的關(guān)系。正如模擬所預測的那樣,可以觀(guān)察到上部開(kāi)關(guān)和下部開(kāi)關(guān)之間的明顯差異。該圖還包括 2mΩ/7 的理想值和 ±1% 的偏差作為參考。圖 3 顯示分流值與溫度沒(méi)有顯著(zhù)相關(guān)性,盡管根據圖 4,分流電阻器上的溫度隨著(zhù)負載電流的增加而增加。分流溫度是在風(fēng)冷系統中使用紅外攝像機測量的。
圖 4:電阻器的分流溫度(1)
通過(guò)脈沖測量來(lái)研究電流測量的動(dòng)態(tài)特性。圖 5 描繪了下部開(kāi)關(guān)激活 (t=0) 和停用 (t=46.1μs) 期間電流波形的方向。
圖 5:?jiǎn)蚊}沖測試時(shí)的輸出電流(1)
測量是在特定條件下進(jìn)行的,例如直流鏈路電壓VDC=600V、相對較低的負載電感負載=35μH、以及在室溫下。圖 5 中的黑色曲線(xiàn)表示通過(guò)連接到交流端子的傳感器測得的電流。相反,綠色曲線(xiàn)對應于使用 delta-sigma 調制器和抽取率 OSR=64 的數字濾波器獲得的分流器兩端測量的電壓。此外,圖 6 用紅色曲線(xiàn)顯示了圖 5 中觀(guān)察到的電流傳感器和分流器測量值之間的偏差。
圖 6:電流傳感器和分流器之間的電流偏差(1)
藍色曲線(xiàn)是通過(guò)考慮兩個(gè)校正而生成的:合并不同電流路徑的模擬分流電阻并減去電感耦合 L Shunt ?di/dt(其中 L Shunt =0.4nH)的影響。需要注意的是,圖6中灰色框標記的區域表示由于濾波器的低通特性而出現較大偏差的部分。這些偏差強調了測量設置的局限性以及由于傳輸時(shí)間誤差和濾波器特性而準確確定電感分流器的挑戰。
結論
電流分流器仍然是電氣設計中強大的實(shí)用工具,可提供高精度電流測量和控制。盡管存在某些限制,例如引入寄生元件和缺乏內置隔離,但這些挑戰可以通過(guò)仔細的設計和緩解技術(shù)來(lái)解決。通過(guò)利用其優(yōu)勢,同時(shí)考慮其局限性,設計人員和研究人員可以?xún)?yōu)化創(chuàng )新產(chǎn)品的性能和效率。
免責聲明:本文為轉載文章,轉載此文目的在于傳遞更多信息,版權歸原作者所有。本文所用視頻、圖片、文字如涉及作品版權問(wèn)題,請聯(lián)系小編進(jìn)行處理。
推薦閱讀:
通過(guò)速度最快的相機和采集卡實(shí)現醫學(xué)成像的實(shí)時(shí)全息渲染
中國電子智能制造工廠(chǎng)示范線(xiàn)首次亮相第102屆中國電子展
ST:不止于“芯”,半導體業(yè)如何為ESG可持續發(fā)展賦能
如何克服快速、高效的電動(dòng)汽車(chē)充電基礎設施的設計挑戰