<s id="eoqoe"><xmp id="eoqoe">
<button id="eoqoe"><strong id="eoqoe"></strong></button>
<s id="eoqoe"><xmp id="eoqoe">
<button id="eoqoe"><strong id="eoqoe"></strong></button>
<wbr id="eoqoe"></wbr>
<wbr id="eoqoe"><strong id="eoqoe"></strong></wbr>
<wbr id="eoqoe"><strong id="eoqoe"></strong></wbr>
<wbr id="eoqoe"><strong id="eoqoe"></strong></wbr>
<wbr id="eoqoe"><label id="eoqoe"></label></wbr>
<button id="eoqoe"></button>
<wbr id="eoqoe"></wbr>
你的位置:首頁(yè) > 互連技術(shù) > 正文

變壓器的噪聲活躍節點(diǎn)相位干燥繞法抑制EMI

發(fā)布時(shí)間:2019-07-19 責任編輯:lina

【導讀】本文以一款反激式開(kāi)關(guān)電源為例,闡述了其傳導共模干擾的產(chǎn)生、傳播機理。根據噪聲活躍節點(diǎn)平衡的思想,提出了一種新的變壓器EMC設計方法。
 
本文以一款反激式開(kāi)關(guān)電源為例,闡述了其傳導共模干擾的產(chǎn)生、傳播機理。根據噪聲活躍節點(diǎn)平衡的思想,提出了一種新的變壓器EMC設計方法。通過(guò)實(shí)驗驗證,與傳統的設計方法相比,該方法對傳導電磁干擾(EMI)的抑制能力更強,且能降低變壓器的制作成本和工藝復雜程度。本方法同樣適用于其他形式的帶變壓器拓撲結構的開(kāi)關(guān)電源。
 
隨著(zhù)功率半導體器件技術(shù)的發(fā)展,開(kāi)關(guān)電源高功率體積比和高效率的特性使得其在現代軍事、工業(yè)和商業(yè)等各級別的儀器設備中得到廣泛應用,并且隨著(zhù)時(shí)鐘頻率的不斷提高,設備的電磁兼容性(EMC)問(wèn)題引起人們的廣泛關(guān)注。EMC設計已成為開(kāi)關(guān)電源開(kāi)發(fā)設計中必不可少的重要環(huán)節。
 
傳導電磁干擾(EMI)噪聲的抑制必須在產(chǎn)品開(kāi)發(fā)初期就加以考慮。通常情況下,加裝電源線(xiàn)濾波器是抑制傳導EMI的必要措施[1]。但是,僅僅依靠電源輸入端的濾波器來(lái)抑制干擾往往會(huì )導致濾波器中元件的電感量增加和電容量增大。而電感量的增加使體積增加;電容量的增大受到漏電流安全標準的限制。電路中的其他部分如果設計恰當也可以完成與濾波器相似的工作。本文提出了變壓器的噪聲活躍節點(diǎn)相位干燥繞法,這種設計方法不僅能減少電源線(xiàn)濾波器的體積,還能降低成本。
 
1、反激式開(kāi)關(guān)電源的共模傳導干擾
電子設備的傳導噪聲干擾指的是:設備在與供電電網(wǎng)連接工作時(shí)以噪聲電流的形式通過(guò)電源線(xiàn)傳導到公共電網(wǎng)環(huán)境中去的電磁干擾。傳導干擾分為共模干擾與差模干擾兩種。共模干擾電流在零線(xiàn)與相線(xiàn)上的相位相等;差模干擾電流在零線(xiàn)與相線(xiàn)上的相位相反。差模干擾對總體傳導干擾的貢獻較小,且主要集中在噪聲頻譜低頻端,較容易抑制;共模干擾對傳導干擾的貢獻較大,且主要處在噪聲頻譜的中頻和高頻頻段。對共模傳導干擾的抑制是電子設備傳導EMC設計中的難點(diǎn),也是最主要的任務(wù)。
 
反激式開(kāi)關(guān)電源的電路中存在一些電壓劇變的節點(diǎn)。和電路中其他電勢相對穩定的節點(diǎn)不同,這些節點(diǎn)的電壓包含高強度的高頻成分[2]。這些電壓變化十分活躍的節點(diǎn)稱(chēng)為噪聲活躍節點(diǎn)。噪聲活躍節點(diǎn)是開(kāi)關(guān)電源電路中的共模傳導干擾源,它作用于電路中的對地雜散電容就產(chǎn)生共模噪聲電流ICM 。而電路中對EMI影響較大的對地雜散電容有:功率開(kāi)關(guān)管的漏極對地的寄生電容Cde,變壓器的主邊繞組對副邊繞組的寄生電容Cpa;變壓器的副邊回路對地的寄生電容Cae, 變壓器主、副邊繞組對磁芯的寄生電容Cpc、Cac 以及變壓器磁芯對地的寄生電容Cce這些寄生電容在電路中的分布如圖1所示。
 
變壓器的噪聲活躍節點(diǎn)相位干燥繞法抑制EMI
圖1、共模噪聲電流在電路中的耦合途徑
 
圖1中的共模電流ICM在電路中的耦合途徑主要有3條:從噪聲源—— 功率開(kāi)關(guān)管的d極通過(guò)Cde耦合到地;從噪聲源通過(guò)Cpa耦合到變壓器次級電路,再通過(guò)Cae 耦合到地;從變壓器的前、次級線(xiàn)圈通過(guò)Cpc、Cac 耦合到變壓器磁芯,再通過(guò)Cce 耦合到地。這3種電流是構成共模噪聲電流(圖1中的黑色箭頭所示)的主要因素。共模電流通過(guò)電源線(xiàn)輸入端的地線(xiàn)回流,從而被LISN取樣測量得到。
 
2、隔離變壓器的EMC設計
2.1、傳統變壓器EMC設計
共模噪聲的耦合除了通過(guò)場(chǎng)效應管d極對地這條途徑外,開(kāi)關(guān)管d極的噪聲電壓通過(guò)變壓器的寄生電容將噪聲電流耦合到變壓器副邊繞組所在的回路,再通過(guò)次級回路對地的寄生電容耦合到地也是共模電流產(chǎn)生的途徑。因此設法減小從變壓器主邊繞組傳遞到副邊繞組間的共模電流是一種有效的EMC設計方法。傳統的變壓器EMC設計方法是在兩繞組間添加隔離層[3],如圖2所示。
 
變壓器的噪聲活躍節點(diǎn)相位干燥繞法抑制EMI
圖2、變壓器隔離層對噪聲電流的影響
 
金屬隔離層直接連接地線(xiàn)的設計會(huì )增大共模噪聲電流,使EMC性能變差。隔離層應該是電路中電位穩定的節點(diǎn),比如將圖2中的隔離層連接到電路前級的負極就是一個(gè)很好的接法。這樣的連接能把原本流向大地的共模電流有效分流,從而大大降低電源線(xiàn)的傳導噪聲發(fā)射水平。
 
2.2、節點(diǎn)相位平衡法
在電路中,噪聲電壓活躍節點(diǎn)并不是單一的。以本文分析的電路為例:除功率開(kāi)關(guān)管的d極外,變壓器前級繞組的另一端Uin 也是一個(gè)噪聲電壓活躍節點(diǎn),而且節點(diǎn)電壓的變化方向與場(chǎng)管的d極電壓情況相反。所以變壓器次級繞組的兩端是相位相反的噪聲電壓活躍節點(diǎn)。圖3所示的是采用節點(diǎn)相位平衡法后,變壓器骨架上的線(xiàn)圈分布情況。
 
變壓器的噪聲活躍節點(diǎn)相位干燥繞法抑制EMI
圖3、噪聲電流在變壓器內部的耦合情況
 
變壓器骨架最內層是前級繞組線(xiàn)圈的一半,與功率開(kāi)關(guān)管的d極相連;中間層的線(xiàn)圈是次級繞組;最外層是前級繞組的另一半,與節點(diǎn)Uin相連。由于噪聲電流主要通過(guò)前后級線(xiàn)圈層之間的寄生電容耦合,把前、后級線(xiàn)圈方向相反的噪聲活躍節點(diǎn)成對地繞在內外層相對位置就能使大部分的噪聲電流相互抵消,大大降低了最終耦合到次級的噪聲電流的強度。
 
本文討論的電路中還存在前級電路和次級電路的輔助電源,它們也是由繞在變壓器上的獨立線(xiàn)圈提供能量的。這兩級輔助線(xiàn)圈的存在給噪聲電流的傳播提供了額外的途徑。輔助線(xiàn)圈是為了控制電路的供電設計的。盡管控制電路本身的功率很小,但它們的存在卻增大了電路對地的寄生電容,從而分擔了一部分把共模噪聲從活躍節點(diǎn)耦合到地的工作。然而把這些繞組夾在前級線(xiàn)圈和次級線(xiàn)圈的繞組中間就能增大前后級繞組的距離,從而它們的層間寄生電容就減小了,噪聲電流就能相應減小。因此,變壓器繞制的最終方法應如圖4所示。從內到外的線(xiàn)圈繞組依次是:前級繞組的一半、輔助繞組的一半、后級繞組、輔助繞組的另一半和前級繞組的另一半。
 
3、實(shí)驗部分
變壓器改進(jìn)繞法對開(kāi)關(guān)電源的傳導EMC性能提高的有效性可以通過(guò)實(shí)驗得到驗證。
 
3.1、實(shí)驗方法
實(shí)驗按照文獻[4]中的電壓法進(jìn)行。頻段范圍為0.15~30 MHz;頻譜分析儀的檢波方式為準峰值檢波;測量帶寬為9 kHz;頻譜橫軸(頻率)取對數形式;噪聲信號的單位為dBμV[5]。
 
變壓器的噪聲活躍節點(diǎn)相位干燥繞法抑制EMI
圖4、變壓器改進(jìn)繞法細節
 
3.2、實(shí)驗結果
圖5為變壓器設計改進(jìn)前后實(shí)驗樣品的傳導噪聲頻譜對比。
 
變壓器的噪聲活躍節點(diǎn)相位干燥繞法抑制EMI
圖5、變壓器設計改進(jìn)前后的噪聲頻譜
 
圖5中的上下兩條平行折線(xiàn)分別為國際無(wú)線(xiàn)電干擾特別委員會(huì )(簡(jiǎn)稱(chēng)CISPR)頒布的CISPR22標準中b級要求的準峰值檢波限值和平均值檢波限值;而曲線(xiàn)為開(kāi)關(guān)電源的傳導噪聲頻譜。從實(shí)驗結果可以看出:與傳統方法相比,新方法有著(zhù)更出色的對共模噪聲電流的抑制能力,尤其在中頻1~5MHz的頻段。在較低頻段,電源線(xiàn)上的傳導干擾主要是差模電流引起的;而在中高頻段,共模電流起主要作用。而本文提出的方法對共模電流的抑制較強,實(shí)驗和理論是相符合的。在10 MHz以上的頻段,主要由電路中的其他寄生參數決定EMC性能,與變壓器關(guān)系不大。
 
4、結束語(yǔ)
開(kāi)關(guān)電源電路中的噪聲活躍節點(diǎn)是電路中的共模噪聲源。要降低開(kāi)關(guān)電源的傳導干擾水平,實(shí)際上是減小共模電流強度、增大噪聲源的對地阻抗。在傳統的隔離式EMC設計中,隔離層連接到電路中電位穩定的節點(diǎn)上(如:變壓器前級的負極)要比直接連到地線(xiàn)對EMI干擾的抑制更有效。
 
開(kāi)關(guān)電源電路中的噪聲活躍節點(diǎn)通常都是成對存在的,這些成對節點(diǎn)之間的相位相反,利用這一特點(diǎn)活躍節點(diǎn)相位平衡繞法對EMI抑制的有效性高于傳統的隔離式設計。由于不需要添加隔離金屬層,變壓器的體積與成本都能被有效減小或降低。
要采購變壓器么,點(diǎn)這里了解一下價(jià)格!
特別推薦
技術(shù)文章更多>>
技術(shù)白皮書(shū)下載更多>>
熱門(mén)搜索
?

關(guān)閉

?

關(guān)閉

久久无码人妻精品一区二区三区_精品少妇人妻av无码中文字幕_98精品国产高清在线看入口_92精品国产自产在线观看481页
<s id="eoqoe"><xmp id="eoqoe">
<button id="eoqoe"><strong id="eoqoe"></strong></button>
<s id="eoqoe"><xmp id="eoqoe">
<button id="eoqoe"><strong id="eoqoe"></strong></button>
<wbr id="eoqoe"></wbr>
<wbr id="eoqoe"><strong id="eoqoe"></strong></wbr>
<wbr id="eoqoe"><strong id="eoqoe"></strong></wbr>
<wbr id="eoqoe"><strong id="eoqoe"></strong></wbr>
<wbr id="eoqoe"><label id="eoqoe"></label></wbr>
<button id="eoqoe"></button>
<wbr id="eoqoe"></wbr>