<s id="eoqoe"><xmp id="eoqoe">
<button id="eoqoe"><strong id="eoqoe"></strong></button>
<s id="eoqoe"><xmp id="eoqoe">
<button id="eoqoe"><strong id="eoqoe"></strong></button>
<wbr id="eoqoe"></wbr>
<wbr id="eoqoe"><strong id="eoqoe"></strong></wbr>
<wbr id="eoqoe"><strong id="eoqoe"></strong></wbr>
<wbr id="eoqoe"><strong id="eoqoe"></strong></wbr>
<wbr id="eoqoe"><label id="eoqoe"></label></wbr>
<button id="eoqoe"></button>
<wbr id="eoqoe"></wbr>
你的位置:首頁(yè) > 互連技術(shù) > 正文

PCB上的器件熱耦合與散熱解決方案

發(fā)布時(shí)間:2019-02-26 責任編輯:lina

【導讀】任何散熱解決方案的目標都是確保設備的工作溫度不超過(guò)其制造商規定的安全限值。在電子工業(yè)中,這個(gè)工作溫度被稱(chēng)為器件的“結溫”。例如,在處理器中,這個(gè)術(shù)語(yǔ)字面上指的是電能轉換為熱量的半導體結。
 
任何散熱解決方案的目標都是確保設備的工作溫度不超過(guò)其制造商規定的安全限值。在電子工業(yè)中,這個(gè)工作溫度被稱(chēng)為器件的“結溫”。例如,在處理器中,這個(gè)術(shù)語(yǔ)字面上指的是電能轉換為熱量的半導體結。
 
為了保持工作,熱量必須以確??山邮艿慕Y溫的速率流出半導體。當熱流從整個(gè)器件封裝的結處移動(dòng)時(shí),這種熱流遇到阻力,就像電子在流過(guò)導線(xiàn)時(shí)面對電阻一樣。在熱力學(xué)方面,這種電阻稱(chēng)為導電電阻,由幾個(gè)部分組成。從結點(diǎn)開(kāi)始,熱量可以流向元件的殼體,可以放置散熱器。這被稱(chēng)為ΘJC,或結至殼體的熱阻。熱量也可以從組件的頂部表面流出并流入板中。這被稱(chēng)為結到電路板電阻,或ΘJB
 
ΘJB定義為當熱路徑僅從結點(diǎn)到電路板時(shí),結點(diǎn)和電路板之間的溫差除以功率。為了測量ΘJB,器件的頂部是絕緣的,冷板連接到電路板邊緣(圖1)。這是真正的熱阻,這是器件的特性。唯一的問(wèn)題是,在實(shí)際應用中,人們不知道從不同路徑傳輸了多少功率。
 
PCB上的器件熱耦合與散熱解決方案
圖1:橫截面圖環(huán)形冷板RΘJB 2 。
 
ΨJB是使用多個(gè)傳熱路徑時(shí)的溫差的度量,例如組件的側面和頂部董事會(huì )。這些多路徑是實(shí)際系統中固有的,必須謹慎使用測量。
 
由于組件內有多個(gè)傳熱路徑,單個(gè)電阻不能用于精確計算結溫。從結到環(huán)境的熱阻必須進(jìn)一步細分為電阻網(wǎng)絡(luò ),以提高結溫預測的精度。簡(jiǎn)化的電阻網(wǎng)絡(luò )如圖2所示。
 
PCB上的器件熱耦合與散熱解決方案
圖2:結至環(huán)境電阻網(wǎng)絡(luò )。
 
Joiner等人 1 完成的先前工作將ΘJMA與電路板溫度相關(guān)聯(lián)(見(jiàn)公式1)。 ΘJMA是在評估所有傳熱路徑時(shí)從結到環(huán)境的總熱阻。在這種情況下,ΘCA由散熱器熱阻以及器件和接收器之間的界面電阻表示。
 
表1列出了典型BGA組件的JEDEC參數。這些用于以下示例計算中:
 
ΘJMA=移動(dòng)空氣熱阻的結點(diǎn)
 
ΘJB=結至電路板的熱阻
 
ΘJC=結至殼體的熱阻
 
ΘCA= Case環(huán)境熱阻
 
TBA =電路板溫升
 
PCB上的器件熱耦合與散熱解決方案

參數說(shuō)明值單位ΘJC熱電阻 -
 
結到外殼0.45°C/WΘJB熱阻 -
 
結至電路板2.6°C/W TDP熱設計功率20 W Tj最高結溫105°C
 
表1:典型熱封裝規格
 
隨著(zhù)電路板布局變得越來(lái)越密集,需要設計出使用盡可能少空間的優(yōu)化散熱解決方案。簡(jiǎn)而言之,沒(méi)有余量允許過(guò)度設計的散熱器具有緊密的元件間距??紤]板耦合的影響是這種優(yōu)化的重要部分。只有在考慮結殼到殼體的傳熱路徑時(shí)才存在使用超大尺寸散熱器的可能性。
 
為確保在55°C環(huán)境溫度下的105°C結溫,典型元件(見(jiàn)表1)需要2.05°C/W的散熱器電阻(如果忽略電路板導通)。當考慮電路板導通時(shí),假設電路板溫度與空氣溫度相同,實(shí)際結溫可能低至74°C。這表示散熱片大于必要的溫度。
 
從這個(gè)例子可以看出,必須考慮來(lái)自元件連接點(diǎn)的所有傳熱路徑。僅使用ΘJC和ΘCA值可能導致大于最佳的散熱器,并且可能無(wú)法準確預測工作結溫。使用建議的相關(guān)性也可以預測從實(shí)驗中得知電路板溫度時(shí)的結溫,如圖3所示。
 
PCB上的器件熱耦合與散熱解決方案
圖3:電路板溫度升高對結溫的影響。
 
當存在多個(gè)元件時(shí),情況變得比僅使用電路板上的單個(gè)元件復雜得多。通過(guò)PCB的組件之間存在傳導耦合,以及組件和相鄰卡之間的輻射和對流耦合。圖4顯示了一個(gè)帶有兩個(gè)元件的簡(jiǎn)單PCB。兩個(gè)元件的功耗假定為P1和P2,并且假設我們可以忽略輻射傳熱。每個(gè)器件下的電路板溫度分別為T(mén)b1和Tb2。我們還假設電路板上兩個(gè)元件之間的橫向電阻為θb1b2。
 
PCB上的器件熱耦合與散熱解決方案
圖4:具有兩個(gè)元件的PCB的簡(jiǎn)單原理圖。
 
PCB上的器件熱耦合與散熱解決方案
圖5:具有兩個(gè)組件的PCB的簡(jiǎn)單電阻網(wǎng)絡(luò )。
在節點(diǎn)J1,J2處應用能量平衡,b1和b2:
 
PCB上的器件熱耦合與散熱解決方案
 
有四個(gè)方程和四個(gè)未知數:Tj1,Tj2。 Tb1和Tb2。未知數可以通過(guò)求解聯(lián)立方程來(lái)確定。這個(gè)簡(jiǎn)單的例子表明,通過(guò)傳導路徑耦合兩個(gè)元件,找到結溫會(huì )變得復雜得多。在實(shí)際應用中,當遇到具有不同導電平面的多個(gè)組件和多個(gè)PCB時(shí),情況比上述示例復雜得多,所有導電平面都通過(guò)傳導,對流和輻射相互作用。
 
為了獲得合理的答案,設計師必須使用合理的工程判斷來(lái)近似不同組件之間的耦合。這可以通過(guò)以下方法實(shí)現:
方法1 - 使用控制體積法或電阻網(wǎng)絡(luò )模型的分析模型。這種方法需要過(guò)度簡(jiǎn)化問(wèn)題;否則解決方案變得非常復雜和不切實(shí)際。
 
方法2 - 在簡(jiǎn)化幾何上使用CFD,如Guenin [4] 所述。該方法表明組件的等效表面積為:
 
PCB上的器件熱耦合與散熱解決方案
 
其中An是組件的等效占位面積,Pn是組件的功耗,PTotal是總功耗,ATotal是PCB的總表面積。在計算等效占位面積之后,可以使用CFD模擬具有占位面積An和功耗為1瓦的單個(gè)元件的簡(jiǎn)單PCB。此過(guò)程可有效計算電路板溫度與環(huán)境溫度(θBA)之間的差值,功耗為1瓦。圖6顯示了一個(gè)這樣的元件的CFD模擬,圖7顯示了θBA作為PCB尺寸的函數。圖7可用于通過(guò)簡(jiǎn)單計算其有效占地面積來(lái)確定其他組件的θBA。假設所有組件具有相同的占位面積。
 
PCB上的器件熱耦合與散熱解決方案
圖6:PCB上單個(gè)組件的CFD模擬
 
PCB上的器件熱耦合與散熱解決方案
圖7:作為PCB尺寸 4 的函數的ΘBA分布。
 
電路板溫度可以計算如下:
 
PCB上的器件熱耦合與散熱解決方案
 
結溫可以計算為:
 
PCB上的器件熱耦合與散熱解決方案
 
其中ψJB是特征參數。
 
方法3 - 如果PCB可用,通過(guò)實(shí)驗測量電路板溫度TB,并使用公式8來(lái)查找結溫。同樣,這是近似值,因為器件耦合到PCB的條件可能與JEDEC測試板使用的條件完全不同。
 
 
 
 
推薦閱讀:
分享信號隔離器的相關(guān)知識
共模電感是如何抑制干擾噪聲?
變頻器的結構原理
村田電容溫度電壓和精度屬性規則介紹
CITE2019大看點(diǎn): 海爾投影智能音箱還能用來(lái)彈鋼琴
要采購外殼么,點(diǎn)這里了解一下價(jià)格!
特別推薦
技術(shù)文章更多>>
技術(shù)白皮書(shū)下載更多>>
熱門(mén)搜索
?

關(guān)閉

?

關(guān)閉

久久无码人妻精品一区二区三区_精品少妇人妻av无码中文字幕_98精品国产高清在线看入口_92精品国产自产在线观看481页
<s id="eoqoe"><xmp id="eoqoe">
<button id="eoqoe"><strong id="eoqoe"></strong></button>
<s id="eoqoe"><xmp id="eoqoe">
<button id="eoqoe"><strong id="eoqoe"></strong></button>
<wbr id="eoqoe"></wbr>
<wbr id="eoqoe"><strong id="eoqoe"></strong></wbr>
<wbr id="eoqoe"><strong id="eoqoe"></strong></wbr>
<wbr id="eoqoe"><strong id="eoqoe"></strong></wbr>
<wbr id="eoqoe"><label id="eoqoe"></label></wbr>
<button id="eoqoe"></button>
<wbr id="eoqoe"></wbr>