<s id="eoqoe"><xmp id="eoqoe">
<button id="eoqoe"><strong id="eoqoe"></strong></button>
<s id="eoqoe"><xmp id="eoqoe">
<button id="eoqoe"><strong id="eoqoe"></strong></button>
<wbr id="eoqoe"></wbr>
<wbr id="eoqoe"><strong id="eoqoe"></strong></wbr>
<wbr id="eoqoe"><strong id="eoqoe"></strong></wbr>
<wbr id="eoqoe"><strong id="eoqoe"></strong></wbr>
<wbr id="eoqoe"><label id="eoqoe"></label></wbr>
<button id="eoqoe"></button>
<wbr id="eoqoe"></wbr>
你的位置:首頁(yè) > RF/微波 > 正文

阻抗匹配與史密斯圓圖,這是我見(jiàn)過(guò)最詳盡的版本

發(fā)布時(shí)間:2019-05-05 責任編輯:wenwei

【導讀】本文利用史密斯圓圖作為RF阻抗匹配的設計指南。文中給出了反射系數、阻抗和導納的作圖范例,并給出了 MAX2472工作在900MHz時(shí)匹配網(wǎng)絡(luò )的作圖范例。
 
事實(shí)證明,史密斯圓圖仍然是確定傳輸線(xiàn)阻抗的基本工具。
 
在處理RF系統的實(shí)際應用問(wèn)題時(shí),總會(huì )遇到一些非常困難的工作,對各部分級聯(lián)電路的不同阻抗進(jìn)行匹配就是其中之一。一般情況下,需要進(jìn)行匹配的電路包括天線(xiàn)與低噪聲放大器(LNA)之間的匹配、功率放大器輸出(RFOUT)與天線(xiàn)之間的匹配、LNA/VCO輸出與混頻器輸入之間的匹配。匹配的目的是為了保證信號或能量有效地從“信號源”傳送到“負載”。
 
在高頻端,寄生元件(比如連線(xiàn)上的電感、板層之間的電容和導體的電阻)對匹配網(wǎng)絡(luò )具有明顯的、不可預知的影響。頻率在數十兆赫茲以上時(shí),理論計算和仿真已經(jīng)遠遠不能滿(mǎn)足要求,為了得到適當的最終結果,還必須考慮在實(shí)驗室中進(jìn)行的RF測試、并進(jìn)行適當調諧。需要用計算值確定電路的結構類(lèi)型和相應的目標元件值。
 
有很多種阻抗匹配的方法,包括
 
● 計算機仿真: 由于這類(lèi)軟件是為不同功能設計的而不只是用于阻抗匹配,所以使用起來(lái)比較復雜。設計者必須熟悉用正確的格式輸入眾多的數據。設計人員還需要具有從大量的輸出結果中找到有用數據的技能。另外,除非計算機是專(zhuān)門(mén)為這個(gè)用途制造的,否則電路仿真軟件不可能預裝在計算機上。
 
● 手工計算: 這是一種極其繁瑣的方法,因為需要用到較長(cháng)(“幾公里”)的計算公式、并且被處理的數據多為復數。
 
● 經(jīng)驗: 只有在RF領(lǐng)域工作過(guò)多年的人才能使用這種方法??傊?,它只適合于資深的專(zhuān)家。
 
● 史密斯圓圖:本文要重點(diǎn)討論的內容。
 
本文的主要目的是復習史密斯圓圖的結構和背景知識,并且總結它在實(shí)際中的應用方法。討論的主題包括參數的實(shí)際范例,比如找出匹配網(wǎng)絡(luò )元件的數值。當然,史密斯圓圖不僅能夠為我們找出最大功率傳輸的匹配網(wǎng)絡(luò ),還能幫助設計者優(yōu)化噪聲系數,確定品質(zhì)因數的影響以及進(jìn)行穩定性分析。
 
阻抗匹配與史密斯圓圖,這是我見(jiàn)過(guò)最詳盡的版本
圖1. 阻抗和史密斯圓圖基礎
 
基礎知識
 
在介紹史密斯圓圖的使用之前,最好回顧一下RF環(huán)境下(大于100MHz) IC連線(xiàn)的電磁波傳播現象。這對RS-485傳輸線(xiàn)、PA和天線(xiàn)之間的連接、LNA和下變頻器/混頻器之間的連接等應用都是有效的。
 
大家都知道,要使信號源傳送到負載的功率最大,信號源阻抗必須等于負載的共軛阻抗,即:
 
RS + jXS = RL - jXL
 
阻抗匹配與史密斯圓圖,這是我見(jiàn)過(guò)最詳盡的版本
圖2. 表達式RS + jXS = RL - jXL的等效圖
 
在這個(gè)條件下,從信號源到負載傳輸的能量最大。另外,為有效傳輸功率,滿(mǎn)足這個(gè)條件可以避免能量從負載反射到信號源,尤其是在諸如視頻傳輸、RF或微波網(wǎng)絡(luò )的高頻應用環(huán)境更是如此。
 
史密斯圓圖
 
史密斯圓圖是由很多圓周交織在一起的一個(gè)圖。正確的使用它,可以在不作任何計算的前提下得到一個(gè)表面上看非常復雜的系統的匹配阻抗,唯一需要作的就是沿著(zhù)圓周線(xiàn)讀取并跟蹤數據。
 
史密斯圓圖是反射系數(伽馬,以符號Γ表示)的極座標圖。反射系數也可以從數學(xué)上定義為單端口散射參數,即s11。
 
史密斯圓圖是通過(guò)驗證阻抗匹配的負載產(chǎn)生的。這里我們不直接考慮阻抗,而是用反射系數ΓL,反射系數可以反映負載的特性(如導納、增益、跨導),在處理RF頻率的問(wèn)題時(shí)ΓL更加有用。
 
我們知道反射系數定義為反射波電壓與入射波電壓之比:
 
阻抗匹配與史密斯圓圖,這是我見(jiàn)過(guò)最詳盡的版本
圖3. 負載阻抗
 
負載反射信號的強度取決于信號源阻抗與負載阻抗的失配程度。反射系數的表達式定義為:
 
阻抗匹配與史密斯圓圖,這是我見(jiàn)過(guò)最詳盡的版本
 
由于阻抗是復數,反射系數也是復數。
 
為了減少未知參數的數量,可以固化一個(gè)經(jīng)常出現并且在應用中經(jīng)常使用的參數。這里Z0 (特性阻抗)通常為常數并且是實(shí)數,是常用的歸一化標準值,如50Ω、75Ω、100Ω和600Ω。于是我們可以定義歸一化的負載阻抗:
 
阻抗匹配與史密斯圓圖,這是我見(jiàn)過(guò)最詳盡的版本
 
據此,將反射系數的公式重新寫(xiě)為:
 
阻抗匹配與史密斯圓圖,這是我見(jiàn)過(guò)最詳盡的版本
 
從上式我們可以看到負載阻抗與其反射系數間的直接關(guān)系。但是這個(gè)關(guān)系式是一個(gè)復數,所以并不實(shí)用。我們可以把史密斯圓圖當作上述方程的圖形表示。
 
為了建立圓圖,方程必需重新整理以符合標準幾何圖形的形式(如圓或射線(xiàn))。
 
首先,由方程2.3求解出;
 
阻抗匹配與史密斯圓圖,這是我見(jiàn)過(guò)最詳盡的版本
 
并且
 
阻抗匹配與史密斯圓圖,這是我見(jiàn)過(guò)最詳盡的版本
 
令等式2.5的實(shí)部和虛部相等,得到兩個(gè)獨立的關(guān)系式:
 
阻抗匹配與史密斯圓圖,這是我見(jiàn)過(guò)最詳盡的版本
 
重新整理等式2.6,經(jīng)過(guò)等式2.8至2.13得到最終的方程2.14。這個(gè)方程是在復平面(Γr, Γi)上、圓的參數方程(x - a)² + (y - b)² = R²,它以[r/(r + 1), 0]為圓心,半徑為1/(1 + r)。
 
阻抗匹配與史密斯圓圖,這是我見(jiàn)過(guò)最詳盡的版本
 
更多細節參見(jiàn)圖4a
 
阻抗匹配與史密斯圓圖,這是我見(jiàn)過(guò)最詳盡的版本
圖4a. 圓周上的點(diǎn)表示具有相同實(shí)部的阻抗
 
例如,r = 1的圓,以(0.5, 0)為圓心,半徑為0.5。它包含了代表反射零點(diǎn)的原點(diǎn)(0, 0) (負載與特性阻抗相匹配)。以(0, 0)為圓心、半徑為1的圓代表負載短路。負載開(kāi)路時(shí),圓退化為一個(gè)點(diǎn)(以1, 0為圓心,半徑為零)。與此對應的是最大的反射系數1,即所有的入射波都被反射回來(lái)。 
 
在作史密斯圓圖時(shí),有一些需要注意的問(wèn)題。下面是最重要的幾個(gè)方面:
 
● 所有的圓周只有一個(gè)相同的,唯一的交點(diǎn)(1, 0)。
● 代表0Ω、也就是沒(méi)有電阻(r = 0)的圓是最大的圓。
● 無(wú)限大的電阻對應的圓退化為一個(gè)點(diǎn)(1, 0)
● 實(shí)際中沒(méi)有負的電阻,如果出現負阻值,有可能產(chǎn)生振蕩。
● 選擇一個(gè)對應于新電阻值的圓周就等于選擇了一個(gè)新的電阻。
 
作圖
 
經(jīng)過(guò)等式2.15至2.18的變換,2.7式可以推導出另一個(gè)參數方程,方程2.19。
 
阻抗匹配與史密斯圓圖,這是我見(jiàn)過(guò)最詳盡的版本
 
同樣,2.19也是在復平面(Γr, Γi)上的圓的參數方程(x - a)² + (y - b)² = R²,它的圓心為(1, 1/x),半徑1/x。
 
更多細節參見(jiàn)圖4b
 
阻抗匹配與史密斯圓圖,這是我見(jiàn)過(guò)最詳盡的版本
圖4b. 圓周上的點(diǎn)表示具有相同虛部x的阻抗
 
例如,× = 1的圓以(1, 1)為圓心,半徑為1。所有的圓(x為常數)都包括點(diǎn)(1, 0)。與實(shí)部圓周不同的是,x既可以是正數也可以是負數。來(lái)源于濾波器公眾平臺提醒 這說(shuō)明復平面下半部是其上半部的鏡像。所有圓的圓心都在一條經(jīng)過(guò)橫軸上1點(diǎn)的垂直線(xiàn)上。
 
完成圓圖
 
為了完成史密斯圓圖,我們將兩簇圓周放在一起??梢园l(fā)現一簇圓周的所有圓會(huì )與另一簇圓周的所有圓相交。若已知阻抗為r + jx,只需要找到對應于r和x的兩個(gè)圓周的交點(diǎn)就可以得到相應的反射系數。
 
可互換性
 
上述過(guò)程是可逆的,如果已知反射系數,可以找到兩個(gè)圓周的交點(diǎn)從而讀取相應的r和×的值。過(guò)程如下:
 
● 確定阻抗在史密斯圓圖上的對應點(diǎn)
● 找到與此阻抗對應的反射系數(Γ)
● 已知特性阻抗和Γ,找出阻抗
● 將阻抗轉換為導納
● 找出等效的阻抗
● 找出與反射系數對應的元件值(尤其是匹配網(wǎng)絡(luò )的元件,見(jiàn)圖7)
 
推論
 
因為史密斯圓圖是一種基于圖形的解法,所得結果的精確度直接依賴(lài)于圖形的精度。下面是一個(gè)用史密斯圓圖表示的RF應用實(shí)例:
 
例: 已知特性阻抗為50Ω,負載阻抗如下:
 
阻抗匹配與史密斯圓圖,這是我見(jiàn)過(guò)最詳盡的版本
 
對上面的值進(jìn)行歸一化并標示在圓圖中(見(jiàn)圖5):
 
阻抗匹配與史密斯圓圖,這是我見(jiàn)過(guò)最詳盡的版本
阻抗匹配與史密斯圓圖,這是我見(jiàn)過(guò)最詳盡的版本
圖5. 史密斯圓圖上的點(diǎn)
 
現在可以通過(guò)圖5的圓圖直接解出反射系數Γ。畫(huà)出阻抗點(diǎn)(等阻抗圓和等電抗圓的交點(diǎn)),只要讀出它們在直角坐標水平軸和垂直軸上的投影,就得到了反射系數的實(shí)部Γr和虛部Γi (見(jiàn)圖6)。
 
該范例中可能存在八種情況,在圖6所示史密斯圓圖上可以直接得到對應的反射系數Γ:
 
阻抗匹配與史密斯圓圖,這是我見(jiàn)過(guò)最詳盡的版本
阻抗匹配與史密斯圓圖,這是我見(jiàn)過(guò)最詳盡的版本
圖6. 從X-Y軸直接讀出反射系數Γ的實(shí)部和虛部
 
用導納表示
 
史密斯圓圖是用阻抗(電阻和電抗)建立的。一旦作出了史密斯圓圖,就可以用它分析串聯(lián)和并聯(lián)情況下的參數。這篇文是轉自濾波器公眾平臺,它提醒說(shuō)可以添加新的串聯(lián)元件,確定新增元件的影響只需沿著(zhù)圓周移動(dòng)到它們相應的數值即可。然而,增加并聯(lián)元件時(shí)分析過(guò)程就不是這么簡(jiǎn)單了,需要考慮其它的參數。通常,利用導納更容易處理并聯(lián)元件。
 
我們知道,根據定義Y = 1/Z,Z = 1/Y。導納的單位是姆歐或者Ω-1 (現在導納的單位是西門(mén)子或S)。并且,如果Z是復數,則Y也一定是復數。
 
所以Y = G + jB (2.20),其中G叫作元件的“電導”,B稱(chēng)“電納”。在演算的時(shí)候應該小心謹慎,按照似乎合乎邏輯的假設,可以得出:G = 1/R及B = 1/X,然而實(shí)際情況并非如此,這樣計算會(huì )導致結果錯誤。
 
用導納表示時(shí),第一件要做的事是歸一化, y = Y/Y0,得出y = g + jb。但是如何計算反射系數呢?通過(guò)下面的式子進(jìn)行推導:
 
阻抗匹配與史密斯圓圖,這是我見(jiàn)過(guò)最詳盡的版本
 
結果是G的表達式符號與z相反,并有Γ(y) = -Γ(z)。
 
如果知道z,就能通過(guò)將Γ的符號取反找到一個(gè)與(0, 0)的距離相等但在反方向的點(diǎn)。圍繞原點(diǎn)旋轉180°可以得到同樣的結果(見(jiàn)圖7)。
 
阻抗匹配與史密斯圓圖,這是我見(jiàn)過(guò)最詳盡的版本
圖7. 180°度旋轉后的結果
 
當然,表面上看新的點(diǎn)好像是一個(gè)不同的阻抗,實(shí)際上Z和1/Y表示的是同一個(gè)元件(這個(gè)新值在圓圖上呈現為一個(gè)不同的點(diǎn),而且反射系數也不相同,依次類(lèi)推)。這篇文是轉自濾波器公眾平臺,它提醒說(shuō)出現這種情況的原因是我們的圖形本身是一個(gè)阻抗圖,而新的點(diǎn)代表的是一個(gè)導納。因此在圓圖上讀出的數值單位是西門(mén)子。
 
盡管用這種方法就可以進(jìn)行轉換,但是在解決很多并聯(lián)元件電路的問(wèn)題時(shí)仍不適用。
 
導納圓圖
 
在前面的討論中,我們看到阻抗圓圖上的每一個(gè)點(diǎn)都可以通過(guò)以Γ復平面原點(diǎn)為中心旋轉180°后得到與之對應的導納點(diǎn)。于是,將整個(gè)阻抗圓圖旋轉180°就得到了導納圓圖。這篇文是轉自濾波器公眾平臺,它提醒說(shuō)這種方法十分方便,它使我們不用建立一個(gè)新圖。所有圓周的交點(diǎn)(等電導圓和等電納圓)自然出現在點(diǎn)(-1, 0)。使用導納圓圖,使得添加并聯(lián)元件變得很容易。在數學(xué)上,導納圓圖由下面的公式構造:
 
阻抗匹配與史密斯圓圖,這是我見(jiàn)過(guò)最詳盡的版本
 
解這個(gè)方程:
 
阻抗匹配與史密斯圓圖,這是我見(jiàn)過(guò)最詳盡的版本
 
接下來(lái),令方程3.3的實(shí)部和虛部相等,我們得到兩個(gè)新的獨立的關(guān)系:
 
阻抗匹配與史密斯圓圖,這是我見(jiàn)過(guò)最詳盡的版本
 
從等式3.4,我們可以推導出下面的式子:
 
阻抗匹配與史密斯圓圖,這是我見(jiàn)過(guò)最詳盡的版本
 
它也是復平面(Γr, Γi)上圓的參數方程(x - a)² + (y - b)² = R² (方程3.12),以[-g/(g + 1), 0]為圓心,半徑為1/(1 + g)。
 
從等式3.5,我們可以推導出下面的式子:
 
阻抗匹配與史密斯圓圖,這是我見(jiàn)過(guò)最詳盡的版本
 
同樣得到(x - a)² + (y - b)² = R²型的參數方程(方程3.17)。
 
求解等效阻抗
 
當解決同時(shí)存在串聯(lián)和并聯(lián)元件的混合電路時(shí),可以使用同一個(gè)史密斯圓圖,在需要進(jìn)行從z到y或從y到z的轉換時(shí)將圖形旋轉。
 
考慮圖8所示網(wǎng)絡(luò )(其中的元件以Z0 = 50Ω進(jìn)行了歸一化)。串聯(lián)電抗(x)對電感元件而言為正數,對電容元件而言為負數。而電納(b)對電容元件而言為正數,對電感元件而言為負數。
 
阻抗匹配與史密斯圓圖,這是我見(jiàn)過(guò)最詳盡的版本
圖8. 一個(gè)多元件電路
 
這個(gè)電路需要進(jìn)行簡(jiǎn)化(見(jiàn)圖9)。從最右邊開(kāi)始,有一個(gè)電阻和一個(gè)電感,數值都是1,我們可以在r = 1的圓周和I=1的圓周的交點(diǎn)處得到一個(gè)串聯(lián)等效點(diǎn),即點(diǎn)A。下一個(gè)元件是并聯(lián)元件,我們轉到導納圓圖(將整個(gè)平面旋轉180°),此時(shí)需要將前面的那個(gè)點(diǎn)變成導納,記為A''''?,F在我們將平面旋轉180°,于是我們在導納模式下加入并聯(lián)元件,沿著(zhù)電導圓逆時(shí)針?lè )较?負值)移動(dòng)距離0.3,得到點(diǎn)B。然后又是一個(gè)串聯(lián)元件?,F在我們再回到阻抗圓圖。
 
阻抗匹配與史密斯圓圖,這是我見(jiàn)過(guò)最詳盡的版本
圖9. 將圖8網(wǎng)絡(luò )中的元件拆開(kāi)進(jìn)行分析
 
在返回阻抗圓圖之前,還必需把剛才的點(diǎn)轉換成阻抗(此前是導納),變換之后得到的點(diǎn)記為B'''',這篇文是轉自濾波器公眾平臺 用上述方法,將圓圖旋轉180°回到阻抗模式。沿著(zhù)電阻圓周移動(dòng)距離1.4得到點(diǎn)C就增加了一個(gè)串聯(lián)元件,注意是逆時(shí)針移動(dòng)(負值)。進(jìn)行同樣的操作可增加下一個(gè)元件(進(jìn)行平面旋轉變換到導納),沿著(zhù)等電導圓順時(shí)針?lè )较?因為是正值)移動(dòng)指定的距離(1.1)——這個(gè)點(diǎn)記為D。最后,我們回到阻抗模式增加最后一個(gè)元件(串聯(lián)電感)。于是我們得到所需的值,z,位于0.2電阻圓和0.5電抗圓的交點(diǎn)。至此,得出z = 0.2 + j0.5 。如果系統的特性阻抗是50Ω,有Z = 10 + j25Ω (見(jiàn)圖10)。
 
阻抗匹配與史密斯圓圖,這是我見(jiàn)過(guò)最詳盡的版本
圖10. 在史密斯圓圖上畫(huà)出的網(wǎng)絡(luò )元件
 
逐步進(jìn)行阻抗匹配
 
史密斯圓圖的另一個(gè)用處是進(jìn)行阻抗匹配。這和找出一個(gè)已知網(wǎng)絡(luò )的等效阻抗是相反的過(guò)程。此時(shí),兩端(通常是信號源和負載)阻抗是固定的;如圖11所示。我們的目標是在兩者之間插入一個(gè)設計好的網(wǎng)絡(luò )已達到合適的阻抗匹配。
 
阻抗匹配與史密斯圓圖,這是我見(jiàn)過(guò)最詳盡的版本
圖11. 阻抗已知而元件未知的典型電路
 
初看起來(lái)好像并不比找到等效阻抗復雜。但是問(wèn)題在于有無(wú)限種元件的組合都可以使匹配網(wǎng)絡(luò )具有類(lèi)似的效果,濾波器公眾平臺提醒還需考慮其它因素(比如濾波器的結構類(lèi)型、品質(zhì)因數和有限的可選元件)。
 
實(shí)現這一目標的方法是在史密斯圓圖上不斷增加串聯(lián)和并聯(lián)元件、直到得到我們想要的阻抗。來(lái)源于濾波器公眾平臺提醒 從圖形上看,就是找到一條途徑來(lái)連接史密斯圓圖上的點(diǎn);同樣,說(shuō)明這種方法的最好辦法是給出一個(gè)實(shí)例。
 
我們的目標是在60MHz工作頻率下匹配源阻抗(ZS)和負載阻抗(zL) (見(jiàn)圖11)。網(wǎng)絡(luò )結構已經(jīng)確定為低通,L型(也可以把問(wèn)題看作是如何使負載轉變成數值等于ZS的阻抗,即ZS復共軛)。下面是解的過(guò)程:
 
阻抗匹配與史密斯圓圖,這是我見(jiàn)過(guò)最詳盡的版本
圖12. 圖11的網(wǎng)絡(luò ),將其對應的點(diǎn)畫(huà)在史密斯圓圖上
 
要做的第一件事是將各阻抗值歸一化。如果沒(méi)有給出特性阻抗,選擇一個(gè)與負載/信號源的數值在同一量級的阻抗值。假設Z0為50Ω。于是
 
zS = 0.5 - j0.3, z*S = 0.5 + j0.3, ZL = 2 - j0.5。
 
下一步,在圖上標出這兩個(gè)點(diǎn),A代表zL,D代表z*S
 
然后判別與負載連接的第一個(gè)元件(并聯(lián)電容),先把zL轉化為導納,得到點(diǎn)A''''。
 
確定連接電容C后下一個(gè)點(diǎn)出現在圓弧上的位置。由于不知道C的值,所以我們不知道具體的位置,然而我們確實(shí)知道移動(dòng)的方向。來(lái)源于濾波器公眾平臺提醒 并聯(lián)的電容應該在導納圓圖上沿順時(shí)針?lè )较蛞苿?dòng)、直到找到對應的數值,得到點(diǎn)B (導納)。下一個(gè)元件是串聯(lián)元件,所以必需把B轉換到阻抗平面上去,得到B''''。B''''必需和D位于同一個(gè)電阻圓上。從圖形上看,從A''''到D只有一條路徑,但是如果要經(jīng)過(guò)中間的B點(diǎn)(也就是B''''),就需要經(jīng)過(guò)多次的嘗試和檢驗。在找到點(diǎn)B和B''''后,我們就能夠測量A''''到B和B''''到D的弧長(cháng),前者就是C的歸一化電納值,后者為L(cháng)的歸一化電抗值。
 
A''''到B的弧長(cháng)為b = 0.78,則B = 0.78 × Y0 = 0.0156S。
 
因為ωC = B,所以C = B/ω = B/(2πf) = 0.0156/[2π(60 × 106)] = 41.4pF。
 
B''''到D的弧長(cháng)為× = 1.2,于是X = 1.2 × Z0 = 60Ω。 由ωL = X,得L = X/ω = X/(2πf)= 60/[2π(60 × 106)] = 159nH。
 
阻抗匹配與史密斯圓圖,這是我見(jiàn)過(guò)最詳盡的版本
圖13. MAX2472典型工作電路
 
第二個(gè)例子是MAX2472的輸出匹配電路,匹配于50Ω負載阻抗(zL),工作頻率為900MHz (圖14所示)。該網(wǎng)絡(luò )采用與MAX2472數據資料相同的配置結構,上圖給出了匹配網(wǎng)絡(luò ),來(lái)源于濾波器公眾平臺提醒 包括一個(gè)并聯(lián)電感和串聯(lián)電容,以下給出了匹配網(wǎng)絡(luò )元件值的查找過(guò)程。
 
阻抗匹配與史密斯圓圖,這是我見(jiàn)過(guò)最詳盡的版本
圖14. 圖13所示網(wǎng)絡(luò )在史密斯圓a圖上的相應工作點(diǎn)
 
首先將S22散射參數轉換成等效的歸一化源阻抗。MAX2472的Z0為50Ω,S22 = 0.81/-29.4°轉換成zS = 1.4 - j3.2, zL = 1和zL* = 1。
 
下一步,在圓圖上定位兩個(gè)點(diǎn),zS標記為A,zL*標記為D。因為與信號源連接的是第一個(gè)元件是并聯(lián)電感,將源阻抗轉換成導納,得到點(diǎn)A’。 
 
確定連接電感LMATCH后下一個(gè)點(diǎn)所在的圓弧,由于不知道LMATCH的數值,因此不能確定圓弧終止的位置。但是,我們了解連接LMATCH并將其轉換成阻抗后,源阻抗應該位于r = 1的圓周上。由此,串聯(lián)電容后得到的阻抗應該為z = 1 + j0。以原點(diǎn)為中心,在r = 1的圓上旋轉180°,反射系數圓和等電納圓的交點(diǎn)結合A’點(diǎn)可以得到B (導納)。B點(diǎn)對應的阻抗為B’點(diǎn)。
 
找到B和B''''后,可以測量圓弧A''''B以及圓弧B''''D的長(cháng)度,第一個(gè)測量值可以得到LMATCH。電納的歸一化值,第二個(gè)測量值得到CMATCH電抗的歸一化值。
 
圓弧A''''B的測量值為b = -0.575,B = -0.575 × Y0 = 0.0115S。因為1/ωL = B,則LMATCH = 1/Bω = 1/(B2πf) = 1/(0.01156 × 2 × π × 900 × 106) = 15.38nH,近似為15nH。
 
圓弧B''''D的測量值為× = -2.81,X = -2.81 × Z0 = -140.5Ω。因為-1/ωC = X,則CMATCH = -1/Xω = -1/(X2πf) = -1/(-140.5 × 2 × π × 900 × 106) = 1.259pF,近似為1pF。
 
這些計算值沒(méi)有考慮寄生電感和寄生電容,所得到的數值接近與數據資料中給出的數值: LMATCH = 12nH和CMATCH = 1pF。
 
總結
 
在擁有功能強大的軟件和高速、高性能計算機的今天:人們會(huì )懷疑在解決電路基本問(wèn)題的時(shí)候是否還需要這樣一種基礎和初級的方法。
 
實(shí)際上,一個(gè)真正的工程師不僅應該擁有理論知識,更應該具有利用各種資源解決問(wèn)題的能力!在程序中加入幾個(gè)數字然后得出結果的確是件容易的事情,當問(wèn)題的解十分復雜、并且不唯一時(shí),讓計算機作這樣的工作尤其方便。然而,如果能夠理解計算機的工作平臺所使用的基本理論和原理,知道它們的由來(lái),這樣的工程師或設計者就能夠成為更加全面和值得信賴(lài)的專(zhuān)家,得到的結果也更加可靠。
 
 
推薦閱讀:
 
一文解析霍爾效應傳感器
“物美價(jià)廉”RMS功率計,了解一下
談?wù)勁月泛腿ヅ弘娙?/a>
采樣頻率、采樣點(diǎn)數、頻率分辨率
教你如何選擇電源濾波器
特別推薦
技術(shù)文章更多>>
技術(shù)白皮書(shū)下載更多>>
熱門(mén)搜索
?

關(guān)閉

?

關(guān)閉

久久无码人妻精品一区二区三区_精品少妇人妻av无码中文字幕_98精品国产高清在线看入口_92精品国产自产在线观看481页
<s id="eoqoe"><xmp id="eoqoe">
<button id="eoqoe"><strong id="eoqoe"></strong></button>
<s id="eoqoe"><xmp id="eoqoe">
<button id="eoqoe"><strong id="eoqoe"></strong></button>
<wbr id="eoqoe"></wbr>
<wbr id="eoqoe"><strong id="eoqoe"></strong></wbr>
<wbr id="eoqoe"><strong id="eoqoe"></strong></wbr>
<wbr id="eoqoe"><strong id="eoqoe"></strong></wbr>
<wbr id="eoqoe"><label id="eoqoe"></label></wbr>
<button id="eoqoe"></button>
<wbr id="eoqoe"></wbr>