<s id="eoqoe"><xmp id="eoqoe">
<button id="eoqoe"><strong id="eoqoe"></strong></button>
<s id="eoqoe"><xmp id="eoqoe">
<button id="eoqoe"><strong id="eoqoe"></strong></button>
<wbr id="eoqoe"></wbr>
<wbr id="eoqoe"><strong id="eoqoe"></strong></wbr>
<wbr id="eoqoe"><strong id="eoqoe"></strong></wbr>
<wbr id="eoqoe"><strong id="eoqoe"></strong></wbr>
<wbr id="eoqoe"><label id="eoqoe"></label></wbr>
<button id="eoqoe"></button>
<wbr id="eoqoe"></wbr>
你的位置:首頁(yè) > 電源管理 > 正文

帶有漏電感的反激式轉換器硬件說(shuō)明

發(fā)布時(shí)間:2021-03-19 來(lái)源:Christophe Basso 責任編輯:wenwei

【導讀】反激式轉換器工作于電壓模式控制(VM)的頻率響應和在連續導電模式(CCM)下的驅動(dòng)是次級命令系統。如果大多分析預示傳遞函數的品質(zhì)因數只受各種損耗(歐姆路徑、磁損耗、恢復時(shí)間相關(guān)損耗等)影響,那么由漏電感帶來(lái)的阻尼效應非常小。但瞬態(tài)仿真預示輸出阻尼隨漏電感增加而振蕩。由于現有文獻中的公式?jīng)]有反映出這影響,有必要采用新的模型,本文將作說(shuō)明。

反激式轉換器在CCM
 
一個(gè)理想的CCM反激式轉換器在兩個(gè)工作周期傳輸功率:
 
1)導通時(shí)間ton,在此期間初級端電源開(kāi)關(guān)SW關(guān)閉,能量聚集在變壓器初級電感Lp
 
2)在關(guān)斷時(shí)間toff期間,開(kāi)關(guān)打開(kāi),能量通過(guò)二極管D傳遞至次級端。然而,在檢查原型波形時(shí),可分辨出比基本解釋描述更多的情況。圖1顯示一個(gè)采用變壓器的典型的轉換器受到漏電感lleak的影響。當電源開(kāi)關(guān)關(guān)閉,在變壓器初級電感Lp施加輸入電壓,開(kāi)關(guān)歐姆損耗忽略不計。仔細看這原理圖,這并不是精確的Vin,因為L(cháng)p和lleak分去了一部分電壓。因而此時(shí)Lp的電壓是
 
帶有漏電感的反激式轉換器硬件說(shuō)明 (1)
 
帶有漏電感的反激式轉換器硬件說(shuō)明
圖1:反激式轉換器工作狀態(tài)顯示當電源開(kāi)關(guān)打開(kāi)時(shí),能量?jì)Υ嬖诔跫壎?,隨后能量在次級端循環(huán)
 
在ton期間并考慮到耦合點(diǎn),次級端二極管被阻斷。因為L(cháng)p和lleak串聯(lián),這些元件中的電流ip(t)循環(huán)增加,斜率為
 
帶有漏電感的反激式轉換器硬件說(shuō)明 (2)
 
當控制器指示開(kāi)關(guān)打開(kāi),我們跳轉到圖(b)。此時(shí)感應電流發(fā)現集于漏極節點(diǎn)的電容中的一條通路。寄生參數由漏極端的MOSFET自身的非線(xiàn)性電容Crss和Coss ,加上鉗位二極管的各種不同電容、變壓器繞組間電容和反射到初級的輸出二極管電容組成。所有這些元素集總為接地參考電容,定義為Clump。當電流流過(guò)Clump,漏源電壓迅速增加。由于MOSFET的非線(xiàn)性電容,斜率是不恒定的。但我們可說(shuō)這電壓的斜率近似為
 
帶有漏電感的反激式轉換器硬件說(shuō)明 (3)
 
其中Ipeak是開(kāi)關(guān)打開(kāi)時(shí)的電流值。漏極電壓增加,直到Lp電壓反向。此時(shí),如圖1c,次級二極管偏置但次級端還沒(méi)有電流流通。當Lp和lleak都通電,產(chǎn)生電流到持續充電的集總電容。由于是串聯(lián),Lp和lleak的電流相等,流過(guò)次級二極管的凈電流為0。D開(kāi)始導通的漏極電壓為
 
帶有漏電感的反激式轉換器硬件說(shuō)明 (4)
 
輸出電壓現在反激到Lp——因而稱(chēng)為反激式轉換器——并產(chǎn)生向下的斜率為
 
帶有漏電感的反激式轉換器硬件說(shuō)明 (5)
 
漏極節點(diǎn)繼續增加,直到達到輸入電壓加鉗位電平Vclp。此時(shí)鉗位二極管導通,如圖2a所示。當漏極節點(diǎn)電壓保持在Vin + Vclp,漏電流不再流過(guò)Clump而僅為Vclp。集總電容的電荷吸收漏電感能量,現在Vclp中循環(huán)的電流略小于最初的峰值初級電流。
 
帶有漏電感的反激式轉換器硬件說(shuō)明
圖2:當集總電容被充電到Vin + Vclp,鉗位二極管導通。
 
當開(kāi)關(guān)打開(kāi)具有峰值電流Ip1 ,存儲在電路中的總能量為
 
帶有漏電感的反激式轉換器硬件說(shuō)明 (6)
 
當鉗位二極管開(kāi)始導通,存儲在集總電容中的能量為
 
帶有漏電感的反激式轉換器硬件說(shuō)明 (7)
 
此時(shí),存儲在電路中的能量現包括集總電容:
 
帶有漏電感的反激式轉換器硬件說(shuō)明 (8)
 
其中Ip2 是集總電容充電后的循環(huán)電流。式(6)中的能量數不變,只不過(guò)其中一部分已傳遞到Clump。因而,
 
帶有漏電感的反激式轉換器硬件說(shuō)明 (9)
 
重新整理
 
帶有漏電感的反激式轉換器硬件說(shuō)明 (10)
 
從這一表達式中解得Ip2
 
帶有漏電感的反激式轉換器硬件說(shuō)明 (11)
 
假定下列值
 
帶有漏電感的反激式轉換器硬件說(shuō)明
 
那么從(11)得出電流約976 mA或比打開(kāi)開(kāi)關(guān)時(shí)最初的1 A峰值電流減小2.4%。請注意,Clump是個(gè)高度非線(xiàn)性項,特別是在打開(kāi)開(kāi)關(guān)時(shí)的低電壓點(diǎn)。如果(11)是個(gè)近似的理論公式,平臺實(shí)驗證實(shí)當二極管Dclp開(kāi)始導通時(shí)在鉗位網(wǎng)絡(luò )中循環(huán)的電流更低。在漏極以額外的100-pF電容(1 kV用于離線(xiàn)應用)增加電容,將進(jìn)一步減小電流。這額外的電容通過(guò)緩沖漏極電壓有利于剩余電流裝置(RCD)鉗位溫度和減小關(guān)斷損耗。通過(guò)降低節點(diǎn)的dV/dt,EMI也將得以改善。但添加這電容可能會(huì )限制高線(xiàn)性導通損耗預算,如果開(kāi)關(guān)頻率很高。必須折中考慮。
 
在這點(diǎn)上,漏電感電壓是固定的(忽略紋波):下部接線(xiàn)端保持在Vin + Vclp (忽略鉗位二極管下降),而上部接線(xiàn)端為Vin +( Vout+Vf )/N。因而施加到漏電感的電壓為Vclp-( Vout+Vf )/N 。漏電感的復位時(shí)間在此開(kāi)始。(11)式定義的電流下降,斜率為
 
帶有漏電感的反激式轉換器硬件說(shuō)明 (12)
 
當漏電感復位,次級端二極管電流id (t)以(12)式定義的斜率產(chǎn)生,但此時(shí)為正并按匝數比增加。當漏電感完全耗盡,輸出二極管電流達到峰值(圖2b)。次級電流現在以(5)式定義的斜率減小。這下降斜率持續到開(kāi)關(guān)再次打開(kāi)。這是關(guān)斷時(shí)間說(shuō)明toff。但輸出二極管電流不能立即返回到0。原因是需要時(shí)間激勵漏電感:其電流必須跳轉到初級電感仍然耦合到次級端。這是開(kāi)關(guān)電流從0增加到谷底電流Iv的時(shí)間。當ISW = Iv,,所有初級電流現流過(guò)電源開(kāi)關(guān),次級端二極管阻斷。從這些信息中可推斷出兩個(gè)重要要點(diǎn):
 
1.當開(kāi)關(guān)打開(kāi)時(shí),次級端二極管保持導通一段時(shí)間t1。這是漏電流從0增加到谷底電流Iv的時(shí)間。由于輸出二極管在這較短的時(shí)間內一直導通,Lp退磁:漏電感延長(cháng)次級二極管導通時(shí)間 。雖然開(kāi)關(guān)關(guān)閉,初級電感斜率在漏電感電流達到谷底電流和整體流向地面前不會(huì )發(fā)生變化:占空比D減少d1。
 
2.當開(kāi)關(guān)SW打開(kāi),次級二極管凈電流為0,所有初級電流通過(guò)漏電感充電Clump分流。當漏電感復位,次級電流上升,并在復位完成時(shí)達到峰值:漏電感延遲次級電流產(chǎn)生的時(shí)間t2并影響其峰值。存儲在漏電感中的能量加上初級電感的額外能量在鉗位網(wǎng)絡(luò )中被消耗。
 
這一事件的特寫(xiě)如圖3所示。如您所見(jiàn),漏電感明顯延遲,并阻止次級電流立即達到峰值。而且,這峰值電流不是Ipeak/N ,而是如[1]所示為
 
帶有漏電感的反激式轉換器硬件說(shuō)明 (13)
 
帶有漏電感的反激式轉換器硬件說(shuō)明
圖3:當漏電感被耗盡,次級端電流達到峰值。
 
更新Dc傳遞函數
 
現在我們對轉換過(guò)程有了更好的理解,我們來(lái)計算已描述的小的時(shí)間事件t1和t2。t1是激勵漏電感從0到谷底電流Iv所需的時(shí)間。當SW關(guān)閉,施加到漏電感的電壓是反射輸出電壓(二極管D仍然導通)和輸入電壓Vin。忽略次級端二極管正向壓降Vf,因而時(shí)間t1定義為:
 
帶有漏電感的反激式轉換器硬件說(shuō)明 (14)
 
如果我們規范化至開(kāi)關(guān)周期,我們得到占空比d1
 
帶有漏電感的反激式轉換器硬件說(shuō)明 (15)
 
漏電感復位時(shí)間t2以類(lèi)似方式確定。當開(kāi)關(guān)打開(kāi)時(shí)(忽略集總電容充電時(shí)間),自D開(kāi)始導通,施加到漏電感的電壓是鉗位電平減反射電壓。因而我們有
 
帶有漏電感的反激式轉換器硬件說(shuō)明 (16)
 
一旦規范化至開(kāi)關(guān)周期,我們得出占空比d2
 
帶有漏電感的反激式轉換器硬件說(shuō)明 (17)
 
為確定轉換器輸出電壓的一個(gè)好的工具是電感電荷平衡法,規定電感L在穩態(tài)時(shí)的平均電壓是0:
 
帶有漏電感的反激式轉換器硬件說(shuō)明 (18)
 
初級電感電壓如圖4所示。為符合(18),我們可寫(xiě)以下等式
 
帶有漏電感的反激式轉換器硬件說(shuō)明 (19)
 
在以上表達式中解得Vout并重新整理為
 
帶有漏電感的反激式轉換器硬件說(shuō)明 (20)
 
簡(jiǎn)化為
 
帶有漏電感的反激式轉換器硬件說(shuō)明 (21)
 
這時(shí)漏電感為0。
 
帶有漏電感的反激式轉換器硬件說(shuō)明
圖4:初級電感穩態(tài)時(shí)的平均電壓為0。
 
我們感興趣的觀(guān)察是有效的導通時(shí)間–在這期間,初級電感斜率為正–實(shí)際上是DTsw減少 。有效的占空比隨著(zhù)漏電感增加而進(jìn)一步減小。施加到初級電感的電壓也不是Vin ,而是更小,如式(1)。
 
簡(jiǎn)單的逐周期模型
 
為測試我們的計算和波形,我們已采集了一個(gè)簡(jiǎn)單的反激式轉換器工作于40%的占空比,提供略高于60 W的功率。電氣圖如圖5所示。漏電感已設為50 μH,如果您考慮600 μH的初級電感,說(shuō)明變壓器嚴重耦合(8.3%)。
 
帶有漏電感的反激式轉換器硬件說(shuō)明
圖5:這簡(jiǎn)單模型仿真一個(gè)反激式轉換器并展示其基本波形。
 
帶有漏電感的反激式轉換器硬件說(shuō)明
圖6:這些波形顯示我們在上文描述的所有事件。
 
通過(guò)仿真,我們可提取以下工作點(diǎn),其中Vclp是C2兩端的電壓:
 
Ip=1.77A
 
Iv=672mA
 
Vclp=528V
 
漏電感磁化時(shí)間如(14)所描述,測量為176 ns。采用65-kHz開(kāi)關(guān)頻率,占空比d1
 
帶有漏電感的反激式轉換器硬件說(shuō)明 (22)
 
理論上,變壓器匝數比N為0.25,那么這反激式轉換器的輸出電壓如(21)所定義,等于20 V。如果我們用(20),那么輸出電壓實(shí)際上應等于
 
帶有漏電感的反激式轉換器硬件說(shuō)明 (23)
 
仿真輸出電壓如圖7所示并確定該值。請注意,我們在仿真中使用的二極管的正向壓降為0 V。您可通過(guò)在二極管模型中設置擴散參數N為10m得到這結果。
 
帶有漏電感的反激式轉換器硬件說(shuō)明
圖7:這些波形顯示我們在上文描述的所有事件。
 
如果知道漏電感復位時(shí)間,還可精確計算輸出電流。仿真提供的谷底電流為672 mA,而峰值電流為1.77 A。應用(16)和考慮528 V鉗位電壓(圖5中 C2兩端的電壓),漏電感復位時(shí)間為
 
帶有漏電感的反激式轉換器硬件說(shuō)明 (24)
 
相對應的占空比為
 
帶有漏電感的反激式轉換器硬件說(shuō)明 (25)
 
我們還可預估在開(kāi)關(guān)關(guān)閉后193 ns,漏電感復位時(shí)的次級峰值電流。應用(13),我們發(fā)現
 
帶有漏電感的反激式轉換器硬件說(shuō)明 (26)
 
從圖3的低邊波形,我們現可通過(guò)計算構成該曲線(xiàn)的各個(gè)不同領(lǐng)域確定在二極管和負載中循環(huán)的平均電流:
 
帶有漏電感的反激式轉換器硬件說(shuō)明 (27)
 
導入數值,我們有
 
帶有漏電感的反激式轉換器硬件說(shuō)明 (28)
 
這是由波形觀(guān)測儀給出的值,如圖8所示。
 
帶有漏電感的反激式轉換器硬件說(shuō)明
圖8:仿真次級端平均電流取決于峰值和各種小占空比d1和d2。
 
硬件驗證
 
為證實(shí)我們的分析,我們已建立了簡(jiǎn)單的固定占空比反激式轉換器,其漏電感已被人為地增長(cháng)到初級電感的2.5%,通過(guò)增添一個(gè)外部電感。圖9顯示MOSFET漏極電壓和次級端二極管電流。正如預期,當開(kāi)關(guān)打開(kāi)時(shí),次級電流沒(méi)有立即增加。這是由漏電感退磁時(shí)間引起的延遲。在圖右側,您看二極管波形略微落后于急劇下降的漏極電壓。這是漏電感從0到谷底電流的磁化時(shí)間。圖10 的特寫(xiě)證實(shí)了62 ns的導通時(shí)間。MOSFET的導通與下降的vDS (t)很好地同步,但Lp的磁化周期在62 ns后才真正開(kāi)始。在這62 ns期間, Lp保持退磁,雖然MOSFET已導通。這現象在這里非常短暫,顯然可忽略不計。但您可清楚地觀(guān)察到延遲,這將獲得顯著(zhù)更長(cháng)的有源鉗位架構。
 
帶有漏電感的反激式轉換器硬件說(shuō)明
圖9:采集的原型波形顯示次級端延遲,但小的次級二極管導通時(shí)間也延長(cháng)。
 
帶有漏電感的反激式轉換器硬件說(shuō)明
圖10:下降沿的特寫(xiě)顯示次級端二極管延遲62 ns
 
在圖11中,您可清楚地看到次級端電流延遲,但您也可計算漏電感復位時(shí)間。在此期間,在開(kāi)關(guān)打開(kāi)后,漏極電壓達到穩定值。在本例中這時(shí)間持續217 ns。超調量相當重要,并取決于鉗位二極管正向傳輸時(shí)間。必須在評估MOSFET 漏源擊穿電壓(BVDSS)的最余差量時(shí)考慮到。當RCD二極管被堵塞,高頻振鈴涉及漏電感, Clump產(chǎn)生。阻尼這些振蕩有時(shí)是必要的,因為它們可嚴重輻射和影響EMI信號。確保涉及RCD鉗位的回路極短并靠近變壓器。將幾十歐姆的電阻與二極管串聯(lián)有助于阻尼這些振蕩。
 
帶有漏電感的反激式轉換器硬件說(shuō)明
圖11:觀(guān)察漏極電壓顯示所需的信息,特別是漏電感復位時(shí)間。
 
在這示波器截圖中,延遲持續很短的時(shí)間,因為漏電感迅速復位。但在有源鉗位轉換器中,涉及l(fā)leak和Cclamp的諧振在關(guān)斷時(shí)發(fā)生,自然延長(cháng)復位時(shí)間。這諧振在次級產(chǎn)生平滑斷續的波形,即使工作在CCM模式。
 
結論
 
這第一部分顯示反激式轉換器波形受到漏電感的影響。有效的占空比減少了激勵漏電感所需的時(shí)間,而初級電感退磁延長(cháng)相同的時(shí)間。Dc轉換器功能受到影響,并得出新的表達式。這些事件在反激式轉換器中是微小的,難以想象與一個(gè)良好耦合的變壓器聯(lián)系在一起。但在有源鉗位轉換器中,這時(shí)間可能是顯著(zhù)的。我們第二部分將重點(diǎn)討論由漏電感帶來(lái)的小信號效應。
 
 
免責聲明:本文為轉載文章,轉載此文目的在于傳遞更多信息,版權歸原作者所有。本文所用視頻、圖片、文字如涉及作品版權問(wèn)題,請聯(lián)系小編進(jìn)行處理。
 
推薦閱讀:
 
通過(guò)降低復雜性最大限度提升數據中心的工作持續性
如何利用USB PD實(shí)現便攜式設備的快速充電
不穩定開(kāi)關(guān)電源的診斷和穩定技巧
新思科技與芯耀輝在IP產(chǎn)品領(lǐng)域達成戰略合作伙伴關(guān)系
e絡(luò )盟與無(wú)源元件巨頭Yageo簽署全面分銷(xiāo)協(xié)議
特別推薦
技術(shù)文章更多>>
技術(shù)白皮書(shū)下載更多>>
熱門(mén)搜索
?

關(guān)閉

?

關(guān)閉

久久无码人妻精品一区二区三区_精品少妇人妻av无码中文字幕_98精品国产高清在线看入口_92精品国产自产在线观看481页
<s id="eoqoe"><xmp id="eoqoe">
<button id="eoqoe"><strong id="eoqoe"></strong></button>
<s id="eoqoe"><xmp id="eoqoe">
<button id="eoqoe"><strong id="eoqoe"></strong></button>
<wbr id="eoqoe"></wbr>
<wbr id="eoqoe"><strong id="eoqoe"></strong></wbr>
<wbr id="eoqoe"><strong id="eoqoe"></strong></wbr>
<wbr id="eoqoe"><strong id="eoqoe"></strong></wbr>
<wbr id="eoqoe"><label id="eoqoe"></label></wbr>
<button id="eoqoe"></button>
<wbr id="eoqoe"></wbr>